Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Analysis of neural crest-derived clones reveals novel aspects of facial development

M. Kaucka, E. Ivashkin, D. Gyllborg, T. Zikmund, M. Tesarova, J. Kaiser, M. Xie, J. Petersen, V. Pachnis, SK. Nicolis, T. Yu, P. Sharpe, E. Arenas, H. Brismar, H. Blom, H. Clevers, U. Suter, AS. Chagin, K. Fried, A. Hellander, I. Adameyko,

. 2016 ; 2 (8) : e1600060. [pub] 20160803

Language English Country United States

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Cranial neural crest cells populate the future facial region and produce ectomesenchyme-derived tissues, such as cartilage, bone, dermis, smooth muscle, adipocytes, and many others. However, the contribution of individual neural crest cells to certain facial locations and the general spatial clonal organization of the ectomesenchyme have not been determined. We investigated how neural crest cells give rise to clonally organized ectomesenchyme and how this early ectomesenchyme behaves during the developmental processes that shape the face. Using a combination of mouse and zebrafish models, we analyzed individual migration, cell crowd movement, oriented cell division, clonal spatial overlapping, and multilineage differentiation. The early face appears to be built from multiple spatially defined overlapping ectomesenchymal clones. During early face development, these clones remain oligopotent and generate various tissues in a given location. By combining clonal analysis, computer simulations, mouse mutants, and live imaging, we show that facial shaping results from an array of local cellular activities in the ectomesenchyme. These activities mostly involve oriented divisions and crowd movements of cells during morphogenetic events. Cellular behavior that can be recognized as individual cell migration is very limited and short-ranged and likely results from cellular mixing due to the proliferation activity of the tissue. These cellular mechanisms resemble the strategy behind limb bud morphogenesis, suggesting the possibility of common principles and deep homology between facial and limb outgrowth.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17031530
003      
CZ-PrNML
005      
20171103110028.0
007      
ta
008      
171025s2016 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1126/sciadv.1600060 $2 doi
035    __
$a (PubMed)27493992
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Kaucka, Marketa $u Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden.
245    10
$a Analysis of neural crest-derived clones reveals novel aspects of facial development / $c M. Kaucka, E. Ivashkin, D. Gyllborg, T. Zikmund, M. Tesarova, J. Kaiser, M. Xie, J. Petersen, V. Pachnis, SK. Nicolis, T. Yu, P. Sharpe, E. Arenas, H. Brismar, H. Blom, H. Clevers, U. Suter, AS. Chagin, K. Fried, A. Hellander, I. Adameyko,
520    9_
$a Cranial neural crest cells populate the future facial region and produce ectomesenchyme-derived tissues, such as cartilage, bone, dermis, smooth muscle, adipocytes, and many others. However, the contribution of individual neural crest cells to certain facial locations and the general spatial clonal organization of the ectomesenchyme have not been determined. We investigated how neural crest cells give rise to clonally organized ectomesenchyme and how this early ectomesenchyme behaves during the developmental processes that shape the face. Using a combination of mouse and zebrafish models, we analyzed individual migration, cell crowd movement, oriented cell division, clonal spatial overlapping, and multilineage differentiation. The early face appears to be built from multiple spatially defined overlapping ectomesenchymal clones. During early face development, these clones remain oligopotent and generate various tissues in a given location. By combining clonal analysis, computer simulations, mouse mutants, and live imaging, we show that facial shaping results from an array of local cellular activities in the ectomesenchyme. These activities mostly involve oriented divisions and crowd movements of cells during morphogenetic events. Cellular behavior that can be recognized as individual cell migration is very limited and short-ranged and likely results from cellular mixing due to the proliferation activity of the tissue. These cellular mechanisms resemble the strategy behind limb bud morphogenesis, suggesting the possibility of common principles and deep homology between facial and limb outgrowth.
650    _2
$a zvířata $7 D000818
650    12
$a buněčná diferenciace $7 D002454
650    _2
$a pohyb buněk $7 D002465
650    _2
$a buněčné klony $x cytologie $7 D002999
650    _2
$a ektoderm $x cytologie $x embryologie $7 D004475
650    _2
$a obličej $x embryologie $7 D005145
650    _2
$a exprese genu $7 D015870
650    _2
$a reportérové geny $7 D017930
650    _2
$a zobrazování trojrozměrné $7 D021621
650    _2
$a mezoderm $x cytologie $x embryologie $7 D008648
650    _2
$a myši $7 D051379
650    _2
$a anatomické modely $7 D008953
650    12
$a morfogeneze $7 D009024
650    _2
$a crista neuralis $x cytologie $7 D009432
650    12
$a organogeneze $7 D038081
650    _2
$a fenotyp $7 D010641
650    _2
$a dánio pruhované $7 D015027
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Ivashkin, Evgeny $u Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden.; Research Center of Neurology, 125367 Moscow, Russia.
700    1_
$a Gyllborg, Daniel $u Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden.
700    1_
$a Zikmund, Tomas $u Central European Institute of Technology, Brno University of Technology, 616 00 Brno, Czech Republic.
700    1_
$a Tesarova, Marketa $u Central European Institute of Technology, Brno University of Technology, 616 00 Brno, Czech Republic.
700    1_
$a Kaiser, Jozef $u Central European Institute of Technology, Brno University of Technology, 616 00 Brno, Czech Republic.
700    1_
$a Xie, Meng $u Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden.
700    1_
$a Petersen, Julian $u Department of Molecular Neurosciences, Medical University of Vienna, Vienna 1190, Austria.
700    1_
$a Pachnis, Vassilis $u Division of Molecular Neurobiology, Medical Research Council National Institute for Medical Research, London NW7 1AA, UK.
700    1_
$a Nicolis, Silvia K $u Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy.
700    1_
$a Yu, Tian $u Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Guy's Hospital, London SE1 9RT, UK.
700    1_
$a Sharpe, Paul $u Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Guy's Hospital, London SE1 9RT, UK.
700    1_
$a Arenas, Ernest $u Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden. $7 gn_A_00008223
700    1_
$a Brismar, Hjalmar $u Science for Life Laboratory, Royal Institute of Technology, Solna 17121, Sweden.
700    1_
$a Blom, Hans $u Science for Life Laboratory, Royal Institute of Technology, Solna 17121, Sweden.
700    1_
$a Clevers, Hans $u Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciences, Princess Maxima Centre and University Medical Centre Utrecht, 3584 Utrecht, Netherlands.
700    1_
$a Suter, Ueli $u Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich CH-8093, Switzerland.
700    1_
$a Chagin, Andrei S $u Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden.
700    1_
$a Fried, Kaj $u Department of Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden.
700    1_
$a Hellander, Andreas $u Department of Information Technology, Uppsala University, Uppsala SE-751 05, Sweden.
700    1_
$a Adameyko, Igor $u Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden.; Department of Molecular Neurosciences, Medical University of Vienna, Vienna 1190, Austria. $7 gn_A_00001343
773    0_
$w MED00188818 $t Science advances $x 2375-2548 $g Roč. 2, č. 8 (2016), s. e1600060
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27493992 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20171025 $b ABA008
991    __
$a 20171103110122 $b ABA008
999    __
$a ok $b bmc $g 1255123 $s 992557
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 2 $c 8 $d e1600060 $e 20160803 $i 2375-2548 $m Science advances $n Sci Adv $x MED00188818
LZP    __
$a Pubmed-20171025

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...