cfDNA Changes in Maximal Exercises as a Sport Adaptation Predictor
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34440412
PubMed Central
PMC8392318
DOI
10.3390/genes12081238
PII: genes12081238
Knihovny.cz E-zdroje
- Klíčová slova
- aerobic exercise, anaerobic exercise, cfDNA, exercise load,
- MeSH
- biologické markery krev MeSH
- fyziologická adaptace * MeSH
- lidé MeSH
- mladý dospělý MeSH
- sporty * MeSH
- studie případů a kontrol MeSH
- volné cirkulující nukleové kyseliny krev MeSH
- Check Tag
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- volné cirkulující nukleové kyseliny MeSH
Changes of circulating free plasma DNA (cfDNA) are associated with different types of tissue injury, including those induced by intensive aerobic and anaerobic exercises. Observed changes are dependent from induced inflammation, and thus it may be a potential marker for athletic overtraining. We aimed to identify the response of cfDNA to different types of exercise, with association to exercise intensity as a potential marker of exercise load. Fifty volunteers (25 athletes and 25 physically active men) were assigned to the study and performed maximal aerobic (Bruce test) and anaerobic (Wingate Anaerobic Test) test. Blood samples for cfDNA analysis were collected at four time-points: before, 2-5 min after, 30 min after and 60 min after each type of maximal physical activity. The two-way ANOVA revealed a significant effect of group factor on serum cfDNA concentrations (32.15% higher concentration of cfDNA in the athletes). In turn the results of the post hoc test for the interaction of the repeated measures factor and the group showed that while the concentration of cfDNA decreased by 40.10% in the period from 30 min to 60 min after exercise in the control group, the concentration of cfDNA in the group of athletes remained at a similar level. Our analysis presents different responses depending on the intensity and duration of exercise. Our observations imply that formation of cfDNA is associated with response to physical activity but only during maximal effort.
Academy of Education Vytautas Magnus University 03111 Vilnius Lithuania
Faculty of Physical Education and Sport Charles University 162 52 Prague Czech Republic
Faculty of Physical Education Gdańsk University of Physical Education and Sport 80 336 Gdansk Poland
Institute of Physical Education Kazimierz Wielki University 85 064 Bydgoszcz Poland
Zobrazit více v PubMed
Mieszkowski J., Borkowska A., Stankiewicz B., Kochanowicz A., Niespodziński B., Surmiak M., Waldziński T., Rola R., Petr M., Antosiewicz J. Single High-Dose Vitamin D Supplementation as an Approach for Reducing Ultramarathon-Induced Inflammation: A Double-Blind Randomized Controlled Trial. Nutrients. 2021;13:1280. doi: 10.3390/nu13041280. PubMed DOI PMC
De Salles B.F., Simão R., Fleck S.J., Dias I., Kraemer-Aguiar L.G., Bouskela E. Effects of Resistance Training on Cytokines. Int. J. Sports Med. 2010;31:441–450. doi: 10.1055/s-0030-1251994. PubMed DOI
Mars M., Govender S., Weston A., Naicker V., Chuturgoon A. High intensity exercise: A cause of lymphocyte apoptosis? Biochem. Biophys. Res. Commun. 1998;249:366–370. doi: 10.1006/bbrc.1998.9156. PubMed DOI
Kreider R.B., O’Toole M.L., Fry A.C., Kibler W.B., Nieman D.C., Whelan J.P., Lehmann M. Overtraining in Sport. Human Kinetics; Champaign, IL, USA: 1998.
Mieszkowski J., Kochanowicz M., Żychowska M., Kochanowicz A., Grzybkowska A., Anczykowska K., Sawicki P., Borkowska A., Niespodziński B., Antosiewicz J. Ferritin Genes Overexpression in PBMC and a Rise in Exercise Performance as an Adaptive Response to Ischaemic Preconditioning in Young Men. BioMed Res. Int. 2019;2019:1–9. doi: 10.1155/2019/9576876. PubMed DOI PMC
Maciejewska-Skrendo A., Mieszkowski J., Kochanowicz A., Stankiewicz B., Cieszczyk P., Switala K., de Assis G., Kecler K., Tarnowski M., Sawczuk M. TNFA expression level changes observed in response to the Wingate Anaerobic Test in non-trained and trained individuals. Balt. J. Health Phys. Act. 2019;11:1–10. doi: 10.29359/BJHPA.11.3.01. DOI
Mooren F.C., Lechtermann A., Völker K. Exercise-Induced Apoptosis of Lymphocytes Depends on Training Status. Med. Sci. Sports Exerc. 2004;36:1476–1483. doi: 10.1249/01.MSS.0000139897.34521.E9. PubMed DOI
Margeli A., Skenderi K., Tsironi M., Hantzi E., Matalas A.-L., Vrettou C., Kanavakis E., Chrousos G., Papassotiriou I. Dramatic Elevations of Interleukin-6 and Acute-Phase Reactants in Athletes Participating in the Ultradistance Foot Race Spartathlon: Severe Systemic Inflammation and Lipid and Lipoprotein Changes in Protracted Exercise. J. Clin. Endocrinol. Metab. 2005;90:3914–3918. doi: 10.1210/jc.2004-2346. PubMed DOI
Fatouros I.G., Destouni A., Margonis K., Jamurtas A.Z., Vrettou C., Kouretas D., Mastorakos G., Mitrakou A., Taxildaris K., Kanavakis E., et al. Cell-Free Plasma DNA as a Novel Marker of Aseptic Inflammation Severity Related to Exercise Overtraining. Clin. Chem. 2006;52:1820–1824. doi: 10.1373/clinchem.2006.070417. PubMed DOI
Breitbach S., Tug S., Simon P. Circulating cell-free DNA: An up-coming molecular marker in exercise physiology. Sports Med. 2012;42:565–586. doi: 10.2165/11631380-000000000-00000. PubMed DOI
Ispirlidis I., Fatouros I.G., Jamurtas T., Nikolaidis M.G., Michailidis Y., Douroudos I., Margonis K., Chatzinikolaou A., Kalistratos E., Katrabasas I., et al. Time-course of Changes in Inflammatory and Performance Responses Following a Soccer Game. Clin. J. Sport Med. 2008;18:423–431. doi: 10.1097/JSM.0b013e3181818e0b. PubMed DOI
Fackler M.J., Bujanda Z.L., Umbricht C., Teo W.W., Cho S., Zhang Z., Visvanathan K., Jeter S., Argani P., Wang C., et al. Novel Methylated Biomarkers and a Robust Assay to Detect Circulating Tumor DNA in Metastatic Breast Cancer. Cancer Res. 2014;74:2160–2170. doi: 10.1158/0008-5472.CAN-13-3392. PubMed DOI PMC
Hummel E.M., Hessas E., Müller S., Beiter T., Fisch M., Eibl A., Wolf O.T., Giebel B., Platen P., Kumsta R., et al. Cell-free DNA release under psychosocial and physical stress conditions. Transl. Psychiatry. 2018;8:1–10. doi: 10.1038/s41398-018-0264-x. PubMed DOI PMC
Zhivotosky B., Orrenius S. Assessment of Apoptosis and Necrosis by DNA Fragmentation and Morphological Criteria. Curr. Protoc. Cell Biol. 2001;12:18.3.1–18.3.23. doi: 10.1002/0471143030.cb1803s12. PubMed DOI
Beiter T., Fragasso A., Hudemann J., Schild M., Steinacker J.M., Mooren F.C., Nieß A.M. Neutrophils release extracellular DNA traps in response to exercise. J. Appl. Physiol. 2014;117:325–333. doi: 10.1152/japplphysiol.00173.2014. PubMed DOI
Lou X., Hou Y., Liang D., Peng L., Chen H., Ma S., Zhang L. A novel Alu-based real-time PCR method for the quantitative detection of plasma circulating cell-free DNA: Sensitivity and specificity for the diagnosis of myocardial infarction. Int. J. Mol. Med. 2015;35:72–80. doi: 10.3892/ijmm.2014.1991. PubMed DOI PMC
Tug S., Mehdorn M., Helmig S., Breitbach S., Ehlert T., Simon P. Exploring the Potential of Cell-Free-DNA Measurements After an Exhaustive Cycle-Ergometer Test as a Marker for Performance-Related Parameters. Int. J. Sports Physiol. Perform. 2017;12:597–604. doi: 10.1123/ijspp.2016-0157. PubMed DOI
Breitbach S., Sterzing B., Magallanes C., Tug S., Simon P. Direct measurement of cell-free DNA from serially collected capillary plasma during incremental exercise. J. Appl. Physiol. 2014;117:119–130. doi: 10.1152/japplphysiol.00002.2014. PubMed DOI
Helmig S., Frühbeis C., Krämer-Albers E.-M., Simon P., Tug S. Release of bulk cell free DNA during physical exercise occurs independent of extracellular vesicles. Eur. J. Appl. Physiol. 2015;115:2271–2280. doi: 10.1007/s00421-015-3207-8. PubMed DOI
Velders M., Treff G., Machus K., Bosnyák E., Steinacker J.M., Schumann U. Exercise is a potent stimulus for enhancing circulating DNase activity. Clin. Biochem. 2014;47:471–474. doi: 10.1016/j.clinbiochem.2013.12.017. PubMed DOI
Vittori L.N., Tarozzi A., Latessa P.M. Cell-free DNA as Diagnostic Markers. Humana Press; New York, NY, USA: 2019. Circulating Cell-Free DNA in Physical Activities; pp. 183–197. PubMed DOI
Bar-Or O. The wingate anaerobic test an update on methodology, reliability and validity. Sports Med. 1987;4:381–394. doi: 10.2165/00007256-198704060-00001. PubMed DOI
Bruce R.A. Exercise testing of patients with coronary heart disease. Principles and normal standards for evaluation. Ann. Clin. Res. 1971;3:323–332. PubMed
Haller N., Tug S., Breitbach S., Jörgensen A., Simon P. Increases in Circulating Cell-Free DNA During Aerobic Running Depend on Intensity and Duration. Int. J. Sports Physiol. Perform. 2017;12:455–462. doi: 10.1123/ijspp.2015-0540. PubMed DOI
Jylhävä J., Nevalainen T., Marttila S., Jylhä M., Hervonen A., Hurme M. Characterization of the role of distinct plasma cell-free DNA species in age-associated inflammation and frailty. Aging Cell. 2013;12:388–397. doi: 10.1111/acel.12058. PubMed DOI
Rotstein A., Dotan R., Bar-Or O., Tenenbaum G. Effect of Training on Anaerobic Threshold, Maximal Aerobic Power and Anaerobic Performance of Preadolescent Boys. Int. J. Sports Med. 1986;7:281–286. doi: 10.1055/s-2008-1025775. PubMed DOI
Reaburn P., Dascombe B. Anaerobic performance in masters athletes. Eur. Rev. Aging Phys. Act. 2008;6:39–53. doi: 10.1007/s11556-008-0041-6. DOI
Wilson T.M., Tanaka H. Meta-analysis of the age-associated decline in maximal aerobic capacity in men: Relation to training status. Am. J. Physiol. Heart Circ. Physiol. 2000;278:H829–H834. doi: 10.1152/ajpheart.2000.278.3.H829. PubMed DOI
Mieszkowski J., Stankiewicz B., Kochanowicz A., Niespodziński B., Borkowska A., Antosiewicz J. Effect of Ischemic Preconditioning on Marathon-Induced Changes in Serum Exerkine Levels and Inflammation. Front. Physiol. 2020;11:571220. doi: 10.3389/fphys.2020.571220. PubMed DOI PMC
Ziemann E., Zembron-Lacny A., Kasperska A., Antosiewicz J., Grzywacz T., Garsztka T., Laskowski R. Exercise Training-Induced Changes in Inflammatory Mediators and Heat Shock Proteins in Young Tennis Players. J. Sports Sci. Med. 2013;12:282–289. PubMed PMC
Kasprowicz K., Ziemann E., Ratkowski W., Laskowski R., Kaczor J., Dadci R., Antosiewicz J. Running a 100-km ultra-marathon induces an inflammatory response but does not raise the level of the plasma iron-regulatory protein hepcidin. J. Sports Med. Phys. Fit. 2013;53:533–537. PubMed
Kochanowicz A., Sawczyn S., Niespodziński B., Mieszkowski J., Kochanowicz K., Żychowska M. Cellular Stress Response Gene Expression During Upper and Lower Body High Intensity Exercises. PLoS ONE. 2017;12:e0171247. doi: 10.1371/journal.pone.0171247. PubMed DOI PMC
Rainer T.H., Lo Y.M.D., Chan L.Y.S., Lam N.Y.L., Lit L.C.W., Cocks R.A. Derivation of a prediction rule for posttraumatic organ failure using plasma DNA and other variables. Ann. N. Y. Acad. Sci. 2006;945:211–220. doi: 10.1111/j.1749-6632.2001.tb03888.x. PubMed DOI
Lam N.Y., Rainer T., Chan L.Y., Joynt G., Lo Y.D. Time Course of Early and Late Changes in Plasma DNA in Trauma Patients. Clin. Chem. 2003;49:1286–1291. doi: 10.1373/49.8.1286. PubMed DOI