Implications of Adipose Tissue Content for Changes in Serum Levels of Exercise-Induced Adipokines: A Quasi-Experimental Study
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35886639
PubMed Central
PMC9316284
DOI
10.3390/ijerph19148782
PII: ijerph19148782
Knihovny.cz E-resources
- Keywords
- IL-6, adipose tissue, anaerobic exercise, endurance exercise, leptin, resistin,
- MeSH
- Adipokines * blood MeSH
- Adiponectin MeSH
- Exercise physiology MeSH
- Cytokines MeSH
- Leptin MeSH
- Humans MeSH
- Resistin MeSH
- Adipose Tissue * physiology MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adipokines * MeSH
- Adiponectin MeSH
- Cytokines MeSH
- Leptin MeSH
- Resistin MeSH
Human adipocytes release multiple adipokines into the bloodstream during physical activity. This affects many organs and might contribute to the induction of inflammation. In this study, we aimed to assess changes in circulating adipokine levels induced by intense aerobic and anaerobic exercise in individuals with different adipose tissue content. In the quasi-experimental study, 48 male volunteers (aged 21.78 ± 1.98 years) were assigned to groups depending on their body fat content (BF): LBF, low body fat (<8% BF, n = 16); MBF, moderate body fat (8−14% BF, n = 19); and HBF, high body fat (>14% BF, n = 13). The volunteers performed maximal aerobic effort (MAE) and maximal anaerobic effort (MAnE) exercises. Blood samples were collected at five timepoints: before exercise, immediately after, 2 h, 6 h, and 24 h after each exercise. The selected cytokines were analyzed: adiponectin, follistatin-like 1, interleukin 6, leptin, oncostatin M, and resistin. While the participants’ MAnE and MAE performance were similar regardless of BF, the cytokine response of the HBF group was different from that of the others. Six hours after exercise, leptin levels in the HBF group increased by 35%. Further, immediately after MAnE, resistin levels in the HBF group also increased, by approximately 55%. The effect of different BF was not apparent for other cytokines. We conclude that the adipokine exercise response is associated with the amount of adipose tissue and is related to exercise type.
Faculty of Physical Education and Sport Charles University 162 52 Prague Czech Republic
Faculty of Physical Education Gdansk University of Physical Education and Sport 80 336 Gdansk Poland
Institute of Physical Education Kazimierz Wielki University 85 064 Bydgoszcz Poland
See more in PubMed
Stanford K.I., Goodyear L.J. Exercise regulation of adipose tissue. Adipocyte. 2016;5:153–162. doi: 10.1080/21623945.2016.1191307. PubMed DOI PMC
Mika A., Macaluso F., Barone R., Di Felice V., Sledzinski T. Effect of Exercise on Fatty Acid Metabolism and Adipokine Secretion in Adipose Tissue. Front. Physiol. 2019;10:26. doi: 10.3389/fphys.2019.00026. PubMed DOI PMC
Coelho M., Oliveira T., Fernandes R. Biochemistry of adipose tissue: An endocrine organ. Arch. Med. Sci. 2013;9:191–200. doi: 10.5114/aoms.2013.33181. PubMed DOI PMC
Makki K., Froguel P., Wolowczuk I. Adipose tissue in obesity-related inflammation and insulin resistance: Cells, cytokines, and chemokines. ISRN Inflamm. 2013;2013:139239. doi: 10.1155/2013/139239. PubMed DOI PMC
Scherer P.E., Williams S., Fogliano M., Baldini G., Lodish H.F. A Novel Serum Protein Similar to C1q, Produced Exclusively in Adipocytes. J. Biol. Chem. 1995;270:26746–26749. doi: 10.1074/jbc.270.45.26746. PubMed DOI
Ohashi K., Ouchi N., Matsuzawa Y. Anti-inflammatory and anti-atherogenic properties of adiponectin. Biochimie. 2012;94:2137–2142. doi: 10.1016/j.biochi.2012.06.008. PubMed DOI
Kuryszko J., Sławuta P., Sapikowski G. Secretory function of adipose tissue. Pol. J. Vet. Sci. 2016;19:441–446. doi: 10.1515/pjvs-2016-0056. PubMed DOI
Wang Z.V., Scherer P.E. Adiponectin, the past two decades. J. Mol. Cell Biol. 2016;8:93–100. doi: 10.1093/jmcb/mjw011. PubMed DOI PMC
Zhang Y., Proenca R., Maffei M., Barone M., Leopold L., Friedman J.M. Positional cloning of the mouse obese gene and its human homologue. Nature. 1991;372:425–432. doi: 10.1038/372425a0. PubMed DOI
Cammisotto P.G., Bukowiecki L.J. Mechanisms of leptin secretion from white adipocytes. Am. J. Physiol. Cell Physiol. 2002;283:244–250. doi: 10.1152/ajpcell.00033.2002. PubMed DOI
Klok M.D., Jakobsdottir S., Drent M.L. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: A review. Obes. Rev. 2007;8:21–34. doi: 10.1111/j.1467-789X.2006.00270.x. PubMed DOI
Acquarone E., Monacelli F., Borghi R., Nencioni A., Odetti P. Resistin: A reappraisal. Mech. Ageing Dev. 2019;178:46–63. doi: 10.1016/j.mad.2019.01.004. PubMed DOI
Tripathi D., Kant S., Pandey S., Ehtesham N.Z. Resistin in metabolism, inflammation, and disease. FEBS J. 2020;287:3141–3149. doi: 10.1111/febs.15322. PubMed DOI
Yamauchi T., Kamon J., Minokoshi Y., Ito Y., Waki H., Uchida S., Yamashita S., Noda M., Kita S., Ueki K., et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 2002;8:1288–1295. doi: 10.1038/nm788. PubMed DOI
Steppan C.M., Bailey S.T., Bhat S., Brown E.J., Banerjee R.R., Wright C.M., Patel H.R., Ahima R.S., Lazar M.A. The hormone resistin links obesity to diabetes. Nature. 2001;409:307–312. doi: 10.1038/35053000. PubMed DOI
Matzuk M.M., Lu N., Vogel H., Sellheyer K., Roop D.R., Bradley A. Multiple defects and perinatal death in mice deficient in follistatin. Nature. 1995;374:360–363. doi: 10.1038/374360a0. PubMed DOI
Lee S.-J., Lee Y.-S., Zimmers T.A., Soleimani A., Matzuk M.M., Tsuchida K., Cohn R.D., Barton E.R. Regulation of Muscle Mass by Follistatin and Activins. Front. Cell Dev. Biol. 2010;24:1998–2008. doi: 10.1210/me.2010-0127. PubMed DOI PMC
Singh R., Braga M., Reddy S.T., Lee S.-J., Parveen M., Grijalva V., Vergnes L., Pervin S. Follistatin Targets Distinct Pathways to Promote Brown Adipocyte Characteristics in Brown and White Adipose Tissues. Endocrinology. 2017;158:1217–1230. doi: 10.1210/en.2016-1607. PubMed DOI PMC
Sánchez-Infantes D., White U.A., Elks C.M., Morrison R.F., Gimble J.M., Considine R.V., Ferrante A.W., Ravussin E., Stephens J.M. Oncostatin M Is Produced in Adipose Tissue and Is Regulated in Conditions of Obesity and Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2014;99:E217–E225. doi: 10.1210/jc.2013-3555. PubMed DOI PMC
Elks C.M., Zhao P., Grant R.W., Hang H., Bailey J.L., Burk D.H., McNulty M.A., Mynatt R.L., Stephens J.M. Loss of Oncostatin M Signaling in Adipocytes Induces Insulin Resistance and Adipose Tissue Inflammation in Vivo. J. Biol. Chem. 2016;291:17066–17076. doi: 10.1074/jbc.M116.739110. PubMed DOI PMC
Stephens J.M., Bailey J.L., Hang H., Rittell V., Dietrich M.A., Mynatt R.L., Elks C.M. Adipose Tissue Dysfunction Occurs Independently of Obesity in Adipocyte-Specific Oncostatin Receptor Knockout Mice. Obesity. 2018;26:1439–1447. doi: 10.1002/oby.22254. PubMed DOI PMC
Fain J.N., Madan A.K., Hiler M.L., Cheema P., Bahouth S.W. Comparison of the Release of Adipokines by Adipose Tissue, Adipose Tissue Matrix, and Adipocytes from Visceral and Subcutaneous Abdominal Adipose Tissues of Obese Humans. Endocrinology. 2004;145:2273–2282. doi: 10.1210/en.2003-1336. PubMed DOI
Hotamisligil G.S., Shargill N.S., Spiegelman B.M. Adipose Expression of Tumor Necrosis Factor-α: Direct Role in Obesity-Linked Insulin Resistance. Science. 1993;259:87–91. doi: 10.1126/science.7678183. PubMed DOI
Hotamisligil G.S., Arner P., Caro J.F., Atkinson R.L., Spiegelman B.M. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J. Clin. Investig. 1995;95:2409–2415. doi: 10.1172/JCI117936. PubMed DOI PMC
Schetz M., De Jong A., Deane A.M., Druml W., Hemelaar P., Pelosi P., Pickkers P., Reintam-Blaser A., Roberts J., Sakr Y., et al. Obesity in the critically ill: A narrative review. Intensiv. Care Med. 2019;45:757–769. doi: 10.1007/s00134-019-05594-1. PubMed DOI
Pogodziński D., Ostrowska L., Smarkusz-Zarzecka J., Zyśk B. Secretome of Adipose Tissue as the Key to Understanding the Endocrine Function of Adipose Tissue. Int. J. Mol. Sci. 2022;23:2309. doi: 10.3390/ijms23042309. PubMed DOI PMC
Bobbert T., Wegewitz U., Brechtel L., Freudenberg M., Mai K., Möhlig M., Diederich S., Ristow M., Rochlitz H., Pfeiffer A., et al. Adiponectin Oligomers in Human Serum during Acute and Chronic Exercise: Relation to Lipid Metabolism and Insulin Sensitivity. Int. J. Sports Med. 2007;28:1–8. doi: 10.1055/s-2006-924028. PubMed DOI
Bouassida A., Lakhdar N., Benaissa N., Mejri S., Zaouali M., Zbidi A., Tabka Z. Adiponectin responses to acute moderate and heavy exercises in overweight middle aged subjects. J. Sports Med. Phys. Fit. 2010;50:330–335. PubMed
Numao S., Katayama Y., Hayashi Y., Matsuo T., Tanaka K. Influence of acute aerobic exercise on adiponectin oligomer concentrations in middle-aged abdominally obese men. Metabolism. 2011;60:186–194. doi: 10.1016/j.metabol.2009.12.011. PubMed DOI
Fatouros I.G., Tournis S., Leontsini D., Jamurtas A.Z., Sxina M., Thomakos P., Manousaki M., Douroudos I., Taxildaris K., Mitrakou A. Leptin and Adiponectin Responses in Overweight Inactive Elderly following Resistance Training and Detraining Are Intensity Related. J. Clin. Endocrinol. Metab. 2005;90:5970–5977. doi: 10.1210/jc.2005-0261. PubMed DOI
Elias A., Pandian M., Wang L., Suarez E., James N., Wilson A. Leptin and IGF-I levels in unconditioned male volunteers after short-term exercise. Psychoneuroendocrinology. 2000;25:453–461. doi: 10.1016/S0306-4530(99)00070-0. PubMed DOI
Fisher J.S., Van Pelt R., Zinder O., Landt M., Kohrt W.M. Acute exercise effect on postabsorptive serum leptin. J. Appl. Physiol. 2001;91:680–686. doi: 10.1152/jappl.2001.91.2.680. PubMed DOI
Zhang M.H., Na B., Schiller N.B., Whooley M.A. Resistin, exercise capacity, and inducible ischemia in patients with stable coronary heart disease: Data from the Heart and Soul study. Atherosclerosis. 2010;213:604–610. doi: 10.1016/j.atherosclerosis.2010.09.015. PubMed DOI
Jamurtas A.Z., Theocharis V., Koukoulis G., Stakias N., Fatouros I.G., Kouretas D., Koutedakis Y. The effects of acute exercise on serum adiponectin and resistin levels and their relation to insulin sensitivity in overweight males. Eur. J. Appl. Physiol. 2006;97:122–126. doi: 10.1007/s00421-006-0169-x. PubMed DOI
Højbjerre L., Rosenzweig M., Dela F., Bruun J., Stallknecht B.M., Verkauskiene R., Beltrand J., Claris O., Chevenne D., Deghmoun S., et al. Acute exercise increases adipose tissue interstitial adiponectin concentration in healthy overweight and lean subjects. Eur. J. Endocrinol. 2007;157:613–623. doi: 10.1530/EJE-07-0213. PubMed DOI
Hansen J., Brandt C., Nielsen A.R., Hojman P., Whitham M., Febbraio M.A., Pedersen B.K., Plomgaard P. Exercise Induces a Marked Increase in Plasma Follistatin: Evidence That Follistatin Is a Contraction-Induced Hepatokine. Endocrinology. 2011;152:164–171. doi: 10.1210/en.2010-0868. PubMed DOI
Hofmann M., Schober-Halper B., Oesen S., Franzke B., Tschan H., Bachl N., Strasser E.-M., Quittan M., Wagner K.-H., Wessner B. Effects of elastic band resistance training and nutritional supplementation on muscle quality and circulating muscle growth and degradation factors of institutionalized elderly women: The Vienna Active Ageing Study (VAAS) Eur. J. Appl. Physiol. 2016;116:885–897. doi: 10.1007/s00421-016-3344-8. PubMed DOI PMC
Hwang J.H., McGovern J., Minett G.M., Della Gatta P.A., Roberts L., Harris J.M., Thompson E.W., Parker T.J., Peake J.M., Neubauer O. Mobilizing serum factors and immune cells through exercise to counteract age-related changes in cancer risk. Exerc. Immunol. Rev. 2020;26:80–99. PubMed
Hojman P., Dethlefsen C., Brandt C., Hansen J., Pedersen L., Pedersen B.K. Exercise-induced muscle-derived cytokines inhibit mammary cancer cell growth. Am. J. Physiol. Endocrinol. Metab. 2011;301:504–510. doi: 10.1152/ajpendo.00520.2010. PubMed DOI
Fischer C.P. Interleukin-6 in Acute Exercise and Training: What Is the Biological Relevance? Exerc. Immunol. Rev. 2006;12:6–33. PubMed
Papanicolaou D.A., Petrides J.S., Tsigos C., Bina S., Kalogeras K.T., Wilder R., Gold P.W., Deuster P., Chrousos G.P. Exercise stimulates interleukin-6 secretion: Inhibition by glucocorticoids and correlation with catecholamines. Am. J. Physiol. Metab. 1996;271:E601–E605. doi: 10.1152/ajpendo.1996.271.3.E601. PubMed DOI
Orban Z., Remaley A.T., Sampson M., Trajanoski Z., Chrousos G.P. The Differential Effect of Food Intake and β-Adrenergic Stimulation on Adipose-Derived Hormones and Cytokines in Man. J. Clin. Endocrinol. Metab. 1999;84:2126–2133. doi: 10.1210/jcem.84.6.5747. PubMed DOI
Lyngsø D., Simonsen L., Bülow J. Interleukin-6 production in human subcutaneous abdominal adipose tissue: The effect of exercise. J. Physiol. 2002;543:373–378. doi: 10.1113/jphysiol.2002.019380. PubMed DOI PMC
Sarkar S., Karmakar S.C., Dey S.K. Comparison of body composition, physical fitness parameters and skeletal muscle damage indices among young Indian male soccer & hockey players. Balt. J. Health Phys. Act. 2019;11:1–10. doi: 10.29359/bjhpa.11.2.01. DOI
Maciejewska-Skrendo A., Mieszkowski J., Kochanowicz A., Stankiewicz B., Cieszczyk P., Switala K., Gomes de Assis G., Kecler K., Tarnowski M., Sawczuk M. TNFA expression level changes observed in response to the Wingate Anaerobic Test in non-trained and trained individuals. Balt. J. Health Phys. Act. 2019;11:1–9. doi: 10.29359/BJHPA.11.3.01. DOI
Gallagher D., Heymsfield S.B., Heo M., Jebb S.A., Murgatroyd P.R., Sakamoto Y. Healthy percentage body fat ranges: An approach for developing guidelines based on body mass index. Am. J. Clin. Nutr. 2000;72:694–701. doi: 10.1093/ajcn/72.3.694. PubMed DOI
World Health Organization . Report of a WHO Consultation on Obesity, Geneva, 3–5 June 1997. World Health Organization; Geneva, Switzerland: 1998. Obesity: Preventing and Managing the Global Epidemic. PubMed
Skurk T., Alberti-Huber C., Herder C., Hauner H. Relationship between Adipocyte Size and Adipokine Expression and Secretion. J. Clin. Endocrinol. Metab. 2007;92:1023–1033. doi: 10.1210/jc.2006-1055. PubMed DOI
Konigorski S., Janke J., Drogan D., Bergmann M.M., Hierholzer J., Kaaks R., Boeing H., Pischon T. Prediction of Circulating Adipokine Levels Based on Body Fat Compartments and Adipose Tissue Gene Expression. Obes. Facts. 2019;12:590–605. doi: 10.1159/000502117. PubMed DOI PMC
Humińska-Lisowska K., Mieszkowski J., Kochanowicz A., Stankiewicz B., Niespodziński B., Brzezińska P., Ficek K., Kemerytė-Ivanauskienė E., Cięszczyk P. cfDNA Changes in Maximal Exercises as a Sport Adaptation Predictor. Genes. 2021;12:1238. doi: 10.3390/genes12081238. PubMed DOI PMC
Kochanowicz A., Sawczyn S., Niespodziński B., Mieszkowski J., Kochanowicz K., Żychowska M. Cellular Stress Response Gene Expression during Upper and Lower Body High Intensity Exercises. PLoS ONE. 2017;12:e0171247. doi: 10.1371/journal.pone.0171247. PubMed DOI PMC
Bar-Or O. The Wingate Anaerobic Test. An Update on Methodology, Reliability and Validity. Sports Med. 1987;4:381–394. doi: 10.2165/00007256-198704060-00001. PubMed DOI
Mieszkowski J., Borkowska A., Stankiewicz B., Kochanowicz A., Niespodziński B., Surmiak M., Waldziński T., Rola R., Petr M., Antosiewicz J. Single High-Dose Vitamin D Supplementation as an Approach for Reducing Ultramarathon-Induced Inflammation: A Double-Blind Randomized Controlled Trial. Nutrients. 2021;13:1280. doi: 10.3390/nu13041280. PubMed DOI PMC
Bouassida A., Chamari K., Zaouali M., Feki Y., Zbidi A., Tabka Z. Review on leptin and adiponectin responses and adaptations to acute and chronic exercise. Br. J. Sports Med. 2010;44:620–630. doi: 10.1136/bjsm.2008.046151. PubMed DOI
Saeidi A., Haghighi M.M., Kolahdouzi S., Daraei A., Ben Abderrahmane A., Essop M.F., Laher I., Hackney A.C., Zouhal H. The effects of physical activity on adipokines in individuals with overweight/obesity across the lifespan: A narrative review. Obes. Rev. 2021;22:e13090. doi: 10.1111/obr.13090. PubMed DOI
Yu N., Ruan Y., Gao X., Sun J. Systematic Review and Meta-Analysis of Randomized, Controlled Trials on the Effect of Exercise on Serum Leptin and Adiponectin in Overweight and Obese Individuals. Horm. Metab. Res. 2017;49:164–173. doi: 10.1055/s-0042-121605. PubMed DOI
Cruz I.S., Rosa G., Valle V., De Mello D.B., Fortes M., Dantas E.H. Acute Effects of Concurrent Training on Serum Leptin and Cortisol in Overweighed Young Adults. Rev. Bras. Med. Esporte. 2012;18:81–86. doi: 10.1590/S1517-86922012000200003. DOI
Weltman A., Pritzlaff C.J., Wideman L., Considine R.V., Fryburg D.A., Gutgesell M.E., Hartman M.L., Veldhuis J.D. Intensity of acute exercise does not affect serum leptin concentrations in young men. Med. Sci. Sports Exerc. 2000;32:1556–1561. doi: 10.1097/00005768-200009000-00005. PubMed DOI
Racette S.B., Coppack S.W., Landt M., Klein S. Leptin Production during Moderate-Intensity Aerobic Exercise. J. Clin. Endocrinol. Metab. 1997;82:2275–2277. doi: 10.1210/jc.82.7.2275. PubMed DOI
Middelbeek R.J.W., Motiani P., Brandt N., Nigro P., Zheng J., Virtanen K.A., Kalliokoski K.K., Hannukainen J.C., Goodyear L.J. Exercise intensity regulates cytokine and klotho responses in men. Nutr. Diabetes. 2021;11:1–11. doi: 10.1038/s41387-020-00144-x. PubMed DOI PMC
Bilski J., Mazur-Bialy A.I., Surmiak M., Hubalewska-Mazgaj M., Pokorski J., Nitecki J., Nitecka E., Pokorska J., Targosz A., Ptak-Belowska A., et al. Effect of Acute Sprint Exercise on Myokines and Food Intake Hormones in Young Healthy Men. Int. J. Mol. Sci. 2020;21:8848. doi: 10.3390/ijms21228848. PubMed DOI PMC
Dimitrow P.P., Undas A., Cheng T.O. Exercise modulates circulating adipokine levels in hypertrophic cardiomyopathy. Pol. Arch. Intern. Med. 2011;121:384–390. doi: 10.20452/pamw.1097. PubMed DOI
Zaccaria M., Ermolao A., Brugin E., Bergamin M. Plasma leptin and energy expenditure during prolonged, moderate intensity, treadmill exercise. J. Endocrinol. Investig. 2013;36:396–401. doi: 10.3275/8656. PubMed DOI
Duclos M., Corcuff J.-B., Ruffie A., Roger P., Manier G. Rapid leptin decrease in immediate post-exercise recovery. Clin. Endocrinol. 1999;50:337–342. doi: 10.1046/j.1365-2265.1999.00653.x. PubMed DOI
Bilski J., Jaworek J., Pokorski J., Nitecki J., Nitecka E., Pokorska J., Mazur-Bialy A., Szklarczyk J. Effects of time of day and the wingate test on appetite perceptions, food intake and plasma levels of adipokines. J. Physiol. Pharmacol. 2016;67:667–676. PubMed
Guerra B., Olmedillas H., Guadalupe-Grau A., Ponce-González J.G., Morales-Alamo D., Fuentes T., Chapinal E., Fernández-Pérez L., De Pablos-Velasco P., Santana A., et al. Is sprint exercise a leptin signaling mimetic in human skeletal muscle? J. Appl. Physiol. 2011;111:715–725. doi: 10.1152/japplphysiol.00805.2010. PubMed DOI
Vardar S.A., Karaca A., Güldiken S., Palabıyık O., Süt N., Demir A.M. High-intensity interval training acutely alters plasma adipokine levels in young overweight/obese women. Arch. Physiol. Biochem. 2018;124:149–155. doi: 10.1080/13813455.2017.1369998. PubMed DOI
Duzova H., Gullu E., Cicek G., Koksal B.K., Kayhan B., Gullu A., Sahin I. The effect of exercise induced weight-loss on myokines and adipokines in overweight sedentary females: Steps-aerobics vs. jogging-walking exercises. J. Sports Med. Phys. Fit. 2018;58:295–308. doi: 10.23736/S0022-4707.16.06565-8. PubMed DOI
Horner K., Hopkins M., Finlayson G., Gibbons C., Brennan L. Biomarkers of appetite: Is there a potential role for metabolomics? Nutr. Res. Rev. 2020;33:271–286. doi: 10.1017/S0954422420000062. PubMed DOI
Mendez-Gutierrez A., Aguilera C.M., Osuna-Prieto F.J., Martinez-Tellez B., Prados M.C.R., Acosta F.M., Llamas-Elvira J.M., Ruiz J.R., Sanchez-Delgado G. Exercise-induced changes on exerkines that might influence brown adipose tissue metabolism in young sedentary adults. Eur. J. Sport Sci. 2022;25:1–12. doi: 10.1080/17461391.2022.2040597. PubMed DOI
Essig D.A., Alderson N.L., Ferguson M.A., Bartoli W.P., Durstine J.L. Delayed effects of exercise on the plasma leptin concentration. Metabolism. 2000;49:395–399. doi: 10.1016/S0026-0495(00)90396-2. PubMed DOI
Nindl B.C., Kraemer W.J., Arciero P.J., Samatallee N., Leone C.D., Mayo M.F., Hafeman D.L. Reduction after Resistance Exercise in Men. Med. Sci. Sports Exerc. 2002;34:608–613. doi: 10.1097/00005768-200204000-00008. PubMed DOI
Olive J.L., Miller G.D. Differential effects of maximal- and moderate-intensity runs on plasma leptin in healthy trained subjects. Nutrition. 2001;17:365–369. doi: 10.1016/S0899-9007(01)00522-6. PubMed DOI
Roupas N., Mamali I., Maragkos S., Leonidou L., Armeni A., Markantes G., Tsekouras A., Sakellaropoulos G., Markou K., Georgopoulos N. The effect of prolonged aerobic exercise on serum adipokine levels during an ultra-marathon endurance race. Hormones. 2013;12:275–282. doi: 10.14310/horm.2002.1411. PubMed DOI
Alves M.D.D.J., Silva D.d.S., Pereira E.V.M., Pereira D.D., Fernandes M.S.D.S., Santos D.F.C., Oliveira D.P.M., Vieira-Souza L.M., Aidar F.J., de Souza R.F. Changes in Cytokines Concentration Following Long-Distance Running: A Systematic Review and Meta-Analysis. Front. Physiol. 2022;13:203. doi: 10.3389/fphys.2022.838069. PubMed DOI PMC
Gökbel H., Okudan N., Gül I., Belviranli M., Gergerlioğlu H.S., BaŞaral M.K. Effects of Repeated Bouts of Supramaximal Exercise on Plasma Adiponectin, Interleukin-6, and Tumor Necrosis Factor-α Levels in Sedentary Men. J. Strength Cond. Res. 2012;26:1675–1679. doi: 10.1519/JSC.0b013e318231ac1c. PubMed DOI
Galic S., Oakhill J.S., Steinberg G.R. Adipose tissue as an endocrine organ. Mol. Cell. Endocrinol. 2010;316:129–139. doi: 10.1016/j.mce.2009.08.018. PubMed DOI
Vuolteenaho K., Leppänen T., Kekkonen R., Korpela R., Moilanen E. Running a Marathon Induces Changes in Adipokine Levels and in Markers of Cartilage Degradation–Novel Role for Resistin. PLoS ONE. 2014;9:e110481. doi: 10.1371/journal.pone.0110481. PubMed DOI PMC
Czajkowska A., Ambroszkiewicz J., Mróz A., Witek K., Nowicki D., Małek Ł. The Effect of the Ultra-Marathon Run at a Distance of 100 Kilometers on the Concentration of Selected Adipokines in Adult Men. Int. J. Environ. Res. Public Health. 2020;17:4289. doi: 10.3390/ijerph17124289. PubMed DOI PMC
Steppan C.M., Lazar M.A. Resistin and obesity-associated insulin resistance. Trends Endocrinol. Metab. 2002;13:18–23. doi: 10.1016/S1043-2760(01)00522-7. PubMed DOI
Jamaluddin S., Weakley S.M., Yao Q., Chen C. Resistin: Functional roles and therapeutic considerations for cardiovascular disease. Br. J. Pharmacol. 2012;165:622–632. doi: 10.1111/j.1476-5381.2011.01369.x. PubMed DOI PMC
Mieszkowski J., Stankiewicz B., Kochanowicz A., Niespodziński B., Borkowska A., Antosiewicz J. Effect of Ischemic Preconditioning on Marathon-Induced Changes in Serum Exerkine Levels and Inflammation. Front. Physiol. 2020;11:571220. doi: 10.3389/fphys.2020.571220. PubMed DOI PMC
Kon M., Ebi Y., Nakagaki K. Effects of acute sprint interval exercise on follistatin-like 1 and apelin secretions. Arch. Physiol. Biochem. 2021;127:223–227. doi: 10.1080/13813455.2019.1628067. PubMed DOI
Kim J.-S., Wilson R.L., Taaffe D.R., Galvão D.A., Gray E., Newton R.U. Myokine Expression and Tumor-Suppressive Effect of Serum after 12 wk of Exercise in Prostate Cancer Patients on ADT. Med. Sci. Sports Exerc. 2022;54:197–205. doi: 10.1249/MSS.0000000000002783. PubMed DOI PMC
Coletta A.M., Agha N.H., Baker F.L., Niemiro G.M., Mylabathula P.L., Brewster A.M., Bevers T.B., Fuentes-Mattei E., Basen-Engquist K., Gilchrist S.C., et al. The impact of high-intensity interval exercise training on NK-cell function and circulating myokines for breast cancer prevention among women at high risk for breast cancer. Breast Cancer Res. Treat. 2021;187:407–416. doi: 10.1007/s10549-021-06111-z. PubMed DOI PMC
Ellulu M.S., Patimah I., KhazáAi H., Rahmat A., Abed Y. Obesity and inflammation: The linking mechanism and the complications. Arch. Med. Sci. 2017;13:851–863. doi: 10.5114/aoms.2016.58928. PubMed DOI PMC
Lira F.S., Panissa V.L.G., Julio U., Franchini E. Differences in metabolic and inflammatory responses in lower and upper body high-intensity intermittent exercise. Eur. J. Appl. Physiol. 2015;115:1467–1474. doi: 10.1007/s00421-015-3127-7. PubMed DOI
Williams C.B., Zelt J.G., Castellani L.N., Little J.P., Jung M.E., Wright D.C., Tschakovsky M.E., Gurd B.J. Changes in mechanisms proposed to mediate fat loss following an acute bout of high-intensity interval and endurance exercise. Appl. Physiol. Nutr. Metab. 2013;1244:1236–1244. doi: 10.1139/apnm-2013-0101. PubMed DOI
Starkie R.L., Arkinstall M.J., Koukoulas I., Hawley J., Febbraio M.A. Carbohydrate ingestion attenuates the increase in plasma interleukin-6, but not skeletal muscle interleukin-6 mRNA, during exercise in humans. J. Physiol. 2001;533:585–591. doi: 10.1111/j.1469-7793.2001.0585a.x. PubMed DOI PMC
Pedersen B.K. Muscular Interleukin-6 and Its Role as an Energy Sensor. Med. Sci. Sports Exerc. 2012;44:392–396. doi: 10.1249/MSS.0b013e31822f94ac. PubMed DOI
Antosiewicz J., Kaczor J.J., Kasprowicz K., Laskowski R., Kujach S., Luszczyk M., Radziminski L., Ziemann E. Repeated “all out” interval exercise causes an increase in serum hepcidin concentration in both trained and untrained men. Cell. Immunol. 2013;283:12–17. doi: 10.1016/j.cellimm.2013.06.006. PubMed DOI
Cerqueira É., Marinho D.A., Neiva H.P., Lourenço O. Inflammatory Effects of High and Moderate Intensity Exercise—A Systematic Review. Front. Physiol. 2020;10:1550. doi: 10.3389/fphys.2019.01550. PubMed DOI PMC
Metsios G.S., Moe R.H., Kitas G.D. Exercise and Inflammation. Best Pract. Res. Clin. Rheumatol. 2020;34:101504. doi: 10.1016/j.berh.2020.101504. PubMed DOI
Scheffer D.D.L., Latini A. Exercise-induced immune system response: Anti-inflammatory status on peripheral and central organs. Biochim. Biophys. Acta Mol. Basis Dis. 2020;1866:165823. doi: 10.1016/j.bbadis.2020.165823. PubMed DOI PMC
Blanca M.J., Alarcón R., Arnau J., Bono R., Bendayan R. Effect of variance ratio on ANOVA robustness: Might 1.5 be the limit? Behav. Res. Methods. 2018;50:937–962. doi: 10.3758/s13428-017-0918-2. PubMed DOI