-
Je něco špatně v tomto záznamu ?
Structural and Physico-Chemical Interpretation (SPCI) of QSAR Models and Its Comparison with Matched Molecular Pair Analysis
P. Polishchuk, O. Tinkov, T. Khristova, L. Ognichenko, A. Kosinskaya, A. Varnek, V. Kuz'min,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu srovnávací studie, časopisecké články
PubMed
27419846
DOI
10.1021/acs.jcim.6b00371
Knihovny.cz E-zdroje
- MeSH
- aplikace orální MeSH
- chemické jevy * MeSH
- data mining MeSH
- hematoencefalická bariéra metabolismus MeSH
- krysa rodu rattus MeSH
- kvantitativní vztahy mezi strukturou a aktivitou * MeSH
- oligopeptidy chemie MeSH
- peptidomimetika chemie metabolismus farmakologie toxicita MeSH
- permeabilita MeSH
- racionální návrh léčiv MeSH
- receptory fibrinogenu antagonisté a inhibitory MeSH
- software MeSH
- testy toxicity MeSH
- uživatelské rozhraní počítače MeSH
- výpočetní biologie metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
This paper describes the Structural and Physico-Chemical Interpretation (SPCI) approach, which is an extension of a recently reported method for interpretation of quantitative structure-activity relationship (QSAR) models. This approach can efficiently be used to reveal structural motifs and the major physicochemical factors affecting the investigated properties. Its efficacy was demonstrated both on the classical Free-Wilson data set and on several data sets with different end points (permeability of the blood-brain barrier, fibrinogen receptor antagonists, acute oral toxicity). Structure-activity patterns extracted from QSAR models with SPCI were in good correspondence with experimentally observed relationships and molecular docking, regardless of the machine learning method used. Comparison of SPCI with the matched molecular pair (MMP) method clearly shows an advantage of our approach over MMP, especially for small or structurally diverse data sets. The developed approach has been implemented in the SPCI software tool with a graphical user interface, which is publicly available at http://qsar4u.com/pages/sirms_qsar.php .
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17031582
- 003
- CZ-PrNML
- 005
- 20171030132704.0
- 007
- ta
- 008
- 171025s2016 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1021/acs.jcim.6b00371 $2 doi
- 035 __
- $a (PubMed)27419846
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Polishchuk, Pavel $u Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc , Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic. A. V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine , Lustdorfskaya doroga 86, 65080 Odessa, Ukraine.
- 245 10
- $a Structural and Physico-Chemical Interpretation (SPCI) of QSAR Models and Its Comparison with Matched Molecular Pair Analysis / $c P. Polishchuk, O. Tinkov, T. Khristova, L. Ognichenko, A. Kosinskaya, A. Varnek, V. Kuz'min,
- 520 9_
- $a This paper describes the Structural and Physico-Chemical Interpretation (SPCI) approach, which is an extension of a recently reported method for interpretation of quantitative structure-activity relationship (QSAR) models. This approach can efficiently be used to reveal structural motifs and the major physicochemical factors affecting the investigated properties. Its efficacy was demonstrated both on the classical Free-Wilson data set and on several data sets with different end points (permeability of the blood-brain barrier, fibrinogen receptor antagonists, acute oral toxicity). Structure-activity patterns extracted from QSAR models with SPCI were in good correspondence with experimentally observed relationships and molecular docking, regardless of the machine learning method used. Comparison of SPCI with the matched molecular pair (MMP) method clearly shows an advantage of our approach over MMP, especially for small or structurally diverse data sets. The developed approach has been implemented in the SPCI software tool with a graphical user interface, which is publicly available at http://qsar4u.com/pages/sirms_qsar.php .
- 650 _2
- $a aplikace orální $7 D000284
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a hematoencefalická bariéra $x metabolismus $7 D001812
- 650 12
- $a chemické jevy $7 D055598
- 650 _2
- $a výpočetní biologie $x metody $7 D019295
- 650 _2
- $a data mining $7 D057225
- 650 _2
- $a racionální návrh léčiv $7 D015195
- 650 _2
- $a oligopeptidy $x chemie $7 D009842
- 650 _2
- $a peptidomimetika $x chemie $x metabolismus $x farmakologie $x toxicita $7 D057786
- 650 _2
- $a permeabilita $7 D010539
- 650 12
- $a kvantitativní vztahy mezi strukturou a aktivitou $7 D021281
- 650 _2
- $a krysa rodu Rattus $7 D051381
- 650 _2
- $a receptory fibrinogenu $x antagonisté a inhibitory $7 D039341
- 650 _2
- $a software $7 D012984
- 650 _2
- $a testy toxicity $7 D018675
- 650 _2
- $a uživatelské rozhraní počítače $7 D014584
- 655 _2
- $a srovnávací studie $7 D003160
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Tinkov, Oleg $u T. G. Shevchenko Transdniestria State University , ul. 25 Oktyabrya 107, 3300 Tiraspol, Transdniestria, Republic of Moldova.
- 700 1_
- $a Khristova, Tatiana $u A. V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine , Lustdorfskaya doroga 86, 65080 Odessa, Ukraine. Laboratoire de Chémoinformatique, UMR 7140 CNRS, Université de Strasbourg , 1 rue Blaise Pascal, 67000 Strasbourg, France.
- 700 1_
- $a Ognichenko, Ludmila $u A. V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine , Lustdorfskaya doroga 86, 65080 Odessa, Ukraine.
- 700 1_
- $a Kosinskaya, Anna $u A. V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine , Lustdorfskaya doroga 86, 65080 Odessa, Ukraine.
- 700 1_
- $a Varnek, Alexandre $u Laboratoire de Chémoinformatique, UMR 7140 CNRS, Université de Strasbourg , 1 rue Blaise Pascal, 67000 Strasbourg, France. Laboratory of Chemoinformatics and Molecular Modeling, Butlerov Institut of Chemistry, Kazan Federal University , Kremlevskaya 18, Kazan, Russia.
- 700 1_
- $a Kuz'min, Victor $u A. V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine , Lustdorfskaya doroga 86, 65080 Odessa, Ukraine.
- 773 0_
- $w MED00008945 $t Journal of chemical information and modeling $x 1549-960X $g Roč. 56, č. 8 (2016), s. 1455-69
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27419846 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20171025 $b ABA008
- 991 __
- $a 20171030132753 $b ABA008
- 999 __
- $a ok $b bmc $g 1255175 $s 992609
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 56 $c 8 $d 1455-69 $e 20160729 $i 1549-960X $m Journal of chemical information and modeling $n J Chem Inf Model $x MED00008945
- LZP __
- $a Pubmed-20171025