-
Je něco špatně v tomto záznamu ?
Segmentation and detection of physical activities during a sitting task in Parkinson's disease participants using multiple inertial sensors
Sara Memar, Mehdi Delrobaei, Greydon Gilmore, Kenneth McIsaac, Mandar Jog
Jazyk angličtina Země Česko
Typ dokumentu práce podpořená grantem
- MeSH
- algoritmy MeSH
- design vybavení MeSH
- diagnóza počítačová * přístrojové vybavení MeSH
- elektrické vybavení a zdroje MeSH
- lidé MeSH
- monitorování fyziologických funkcí MeSH
- Parkinsonova nemoc * diagnóza patofyziologie MeSH
- plnění a analýza úkolů MeSH
- počítačové zpracování signálu MeSH
- pohybová aktivita * MeSH
- postura těla MeSH
- reprodukovatelnost výsledků MeSH
- rozpoznávání automatizované MeSH
- správnost dat MeSH
- strojové učení MeSH
- stupeň závažnosti nemoci MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
Introduction. The development of inertial sensors in motion capture systems enables precise measurement of motor symptoms in Parkinson's disease (PD). The type of physical activities performed by the PD participants is an important factor to compute objective scores for specific motor symptoms of the disease. The goal of this study is to propose an approach to automatically detect the physical activities over a period time and segment the time stamps for such detected activities. Methods. A wearable motion capture sensor system using inertial measurement units (IMUs) was used for data collection. Data from the sensors attached to the shoulders, elbows, and wrists were utilized for detecting and segmenting the activities. An unsupervised machine learning algorithm was employed to extract suitable features from the appropriate sensors and classify the data points to the corresponding activity group. Results. The performance of the proposed technique was evaluated with respect to the manually labeled and segmented activities. The experimental results reveal that the proposed auto detection technique – by obtaining high average scores of accuracy (96%), precision (96%), and recall (98%) – is able to effectively detect the activities during the sitting task and segment them to the proper time stamps.
K N Toosi University of Technology Faculty of Electrical Engineering Tehran Iran
Lawson Health Research Institute London ON Canada
Western University Department of Clinical Neurological Sciences London ON Canada
Western University Department of Electrical and Computer Engineering London ON Canada
Citace poskytuje Crossref.org
Literatura
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18002477
- 003
- CZ-PrNML
- 005
- 20180407211104.0
- 007
- ta
- 008
- 180117s2017 xr ad f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.jab.2017.05.002 $2 doi
- 040 __
- $a ABA008 $d ABA008 $e AACR2 $b cze
- 041 0_
- $a eng
- 044 __
- $a xr
- 100 1_
- $a Memar, Sara $u Lawson Health Research Institute, London, ON, Canada
- 245 10
- $a Segmentation and detection of physical activities during a sitting task in Parkinson's disease participants using multiple inertial sensors / $c Sara Memar, Mehdi Delrobaei, Greydon Gilmore, Kenneth McIsaac, Mandar Jog
- 504 __
- $a Literatura
- 520 9_
- $a Introduction. The development of inertial sensors in motion capture systems enables precise measurement of motor symptoms in Parkinson's disease (PD). The type of physical activities performed by the PD participants is an important factor to compute objective scores for specific motor symptoms of the disease. The goal of this study is to propose an approach to automatically detect the physical activities over a period time and segment the time stamps for such detected activities. Methods. A wearable motion capture sensor system using inertial measurement units (IMUs) was used for data collection. Data from the sensors attached to the shoulders, elbows, and wrists were utilized for detecting and segmenting the activities. An unsupervised machine learning algorithm was employed to extract suitable features from the appropriate sensors and classify the data points to the corresponding activity group. Results. The performance of the proposed technique was evaluated with respect to the manually labeled and segmented activities. The experimental results reveal that the proposed auto detection technique – by obtaining high average scores of accuracy (96%), precision (96%), and recall (98%) – is able to effectively detect the activities during the sitting task and segment them to the proper time stamps.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a Parkinsonova nemoc $x diagnóza $x patofyziologie $7 D010300
- 650 12
- $a pohybová aktivita $7 D009043
- 650 _2
- $a elektrické vybavení a zdroje $7 D055615
- 650 _2
- $a postura těla $7 D011187
- 650 _2
- $a správnost dat $7 D000068598
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a stupeň závažnosti nemoci $7 D012720
- 650 _2
- $a monitorování fyziologických funkcí $7 D008991
- 650 _2
- $a počítačové zpracování signálu $7 D012815
- 650 12
- $a diagnóza počítačová $x přístrojové vybavení $7 D003936
- 650 _2
- $a plnění a analýza úkolů $7 D013647
- 650 _2
- $a design vybavení $7 D004867
- 650 _2
- $a rozpoznávání automatizované $7 D010363
- 650 _2
- $a strojové učení $7 D000069550
- 650 _2
- $a algoritmy $7 D000465
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Delrobaei, Mehdi $u K. N. Toosi University of Technology, Faculty of Electrical Engineering, Tehran, Iran
- 700 1_
- $a Gilmore, Greydon $u Lawson Health Research Institute, London, ON, Canada
- 700 1_
- $a McIsaac, Kenneth $u Western University, Department of Electrical and Computer Engineering, London, ON, Canada
- 700 1_
- $a Jog, Mandar $u Lawson Health Research Institute, London, ON, Canada; Western University, Department of Clinical Neurological Sciences, London, ON, Canada
- 773 0_
- $t Journal of applied biomedicine $x 1214-021X $g Roč. 15, č. 4 (2017), s. 282-290 $w MED00012667
- 856 41
- $u https://jab.zsf.jcu.cz/pdfs/jab/2017/04/05.pdf $y plný text volně přístupný
- 910 __
- $a ABA008 $b B 2301 $c 1249 $y 4 $z 0
- 990 __
- $a 20180117103911 $b ABA008
- 991 __
- $a 20180407211144 $b ABA008
- 999 __
- $a ok $b bmc $g 1270003 $s 999146
- BAS __
- $a 3
- BMC __
- $a 2017 $b 15 $c 4 $d 282-290 $i 1214-021X $m Journal of Applied Biomedicine $x MED00012667
- LZP __
- $c NLK188 $d 20180407 $a NLK 2018-03/dk