Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Segmentation and detection of physical activities during a sitting task in Parkinson's disease participants using multiple inertial sensors

Sara Memar, Mehdi Delrobaei, Greydon Gilmore, Kenneth McIsaac, Mandar Jog

. 2017 ; 15 (4) : 282-290.

Jazyk angličtina Země Česko

Typ dokumentu práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc18002477

Introduction. The development of inertial sensors in motion capture systems enables precise measurement of motor symptoms in Parkinson's disease (PD). The type of physical activities performed by the PD participants is an important factor to compute objective scores for specific motor symptoms of the disease. The goal of this study is to propose an approach to automatically detect the physical activities over a period time and segment the time stamps for such detected activities. Methods. A wearable motion capture sensor system using inertial measurement units (IMUs) was used for data collection. Data from the sensors attached to the shoulders, elbows, and wrists were utilized for detecting and segmenting the activities. An unsupervised machine learning algorithm was employed to extract suitable features from the appropriate sensors and classify the data points to the corresponding activity group. Results. The performance of the proposed technique was evaluated with respect to the manually labeled and segmented activities. The experimental results reveal that the proposed auto detection technique – by obtaining high average scores of accuracy (96%), precision (96%), and recall (98%) – is able to effectively detect the activities during the sitting task and segment them to the proper time stamps.

Citace poskytuje Crossref.org

Bibliografie atd.

Literatura

000      
00000naa a2200000 a 4500
001      
bmc18002477
003      
CZ-PrNML
005      
20180407211104.0
007      
ta
008      
180117s2017 xr ad f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jab.2017.05.002 $2 doi
040    __
$a ABA008 $d ABA008 $e AACR2 $b cze
041    0_
$a eng
044    __
$a xr
100    1_
$a Memar, Sara $u Lawson Health Research Institute, London, ON, Canada
245    10
$a Segmentation and detection of physical activities during a sitting task in Parkinson's disease participants using multiple inertial sensors / $c Sara Memar, Mehdi Delrobaei, Greydon Gilmore, Kenneth McIsaac, Mandar Jog
504    __
$a Literatura
520    9_
$a Introduction. The development of inertial sensors in motion capture systems enables precise measurement of motor symptoms in Parkinson's disease (PD). The type of physical activities performed by the PD participants is an important factor to compute objective scores for specific motor symptoms of the disease. The goal of this study is to propose an approach to automatically detect the physical activities over a period time and segment the time stamps for such detected activities. Methods. A wearable motion capture sensor system using inertial measurement units (IMUs) was used for data collection. Data from the sensors attached to the shoulders, elbows, and wrists were utilized for detecting and segmenting the activities. An unsupervised machine learning algorithm was employed to extract suitable features from the appropriate sensors and classify the data points to the corresponding activity group. Results. The performance of the proposed technique was evaluated with respect to the manually labeled and segmented activities. The experimental results reveal that the proposed auto detection technique – by obtaining high average scores of accuracy (96%), precision (96%), and recall (98%) – is able to effectively detect the activities during the sitting task and segment them to the proper time stamps.
650    _2
$a lidé $7 D006801
650    12
$a Parkinsonova nemoc $x diagnóza $x patofyziologie $7 D010300
650    12
$a pohybová aktivita $7 D009043
650    _2
$a elektrické vybavení a zdroje $7 D055615
650    _2
$a postura těla $7 D011187
650    _2
$a správnost dat $7 D000068598
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a stupeň závažnosti nemoci $7 D012720
650    _2
$a monitorování fyziologických funkcí $7 D008991
650    _2
$a počítačové zpracování signálu $7 D012815
650    12
$a diagnóza počítačová $x přístrojové vybavení $7 D003936
650    _2
$a plnění a analýza úkolů $7 D013647
650    _2
$a design vybavení $7 D004867
650    _2
$a rozpoznávání automatizované $7 D010363
650    _2
$a strojové učení $7 D000069550
650    _2
$a algoritmy $7 D000465
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Delrobaei, Mehdi $u K. N. Toosi University of Technology, Faculty of Electrical Engineering, Tehran, Iran
700    1_
$a Gilmore, Greydon $u Lawson Health Research Institute, London, ON, Canada
700    1_
$a McIsaac, Kenneth $u Western University, Department of Electrical and Computer Engineering, London, ON, Canada
700    1_
$a Jog, Mandar $u Lawson Health Research Institute, London, ON, Canada; Western University, Department of Clinical Neurological Sciences, London, ON, Canada
773    0_
$t Journal of applied biomedicine $x 1214-021X $g Roč. 15, č. 4 (2017), s. 282-290 $w MED00012667
856    41
$u https://jab.zsf.jcu.cz/pdfs/jab/2017/04/05.pdf $y plný text volně přístupný
910    __
$a ABA008 $b B 2301 $c 1249 $y 4 $z 0
990    __
$a 20180117103911 $b ABA008
991    __
$a 20180407211144 $b ABA008
999    __
$a ok $b bmc $g 1270003 $s 999146
BAS    __
$a 3
BMC    __
$a 2017 $b 15 $c 4 $d 282-290 $i 1214-021X $m Journal of Applied Biomedicine $x MED00012667
LZP    __
$c NLK188 $d 20180407 $a NLK 2018-03/dk

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...