-
Je něco špatně v tomto záznamu ?
Computational ensemble approach for immune system study: Conformational B-cell epitope prediction
Yuh-Jyh Hu, Shun-Ning You, Chu-Ling Ko
Jazyk angličtina Země Česko
- Klíčová slova
- ensemble learning, meta-decision tree,
- MeSH
- epitopy B-lymfocytární imunologie klasifikace MeSH
- peptidy imunologie klasifikace MeSH
- rozhodovací stromy MeSH
- strojové učení MeSH
- výpočetní biologie MeSH
Various tools have been developed to predict B-cell epitopes. We proposed a multistrategy approach by integrating two ensemble learning techniques, namely bagging and meta-decision tree, with a threshold-based cost-sensitive method. By exploiting the synergy among multiple retrainable inductive learners, it directly learns a tree-like classification architecture from the data, and is not limited by a prespecified structure. In addition, we introduced a new three-dimensional sphere-based structural feature to improve the window-based linear features for increased residue description. We performed independent and cross-validation tests, and compared with previous ensemble meta-learners and state-of-the-art B-cell epitope prediction tools using bound-state and unboundstate antigens. The results demonstrated the superior performance of the bagging meta-decision tree approach compared with single epitope predictors, and showed performance comparable to previous meta-learners. The new approach—requiring no predictions from other B-cell epitope tools—is more flexible and applicable than are previous meta-learners relying on specific pretrained B-cell epitope prediction tools.
Department of Computer Science National Chiao Tung University 1001 University Rd Hsinchu Taiwan
Institute of Biomedical Engineering National Chiao Tung University 1001 University Rd Hsinchu Taiwan
Citace poskytuje Crossref.org
Literatura
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18006191
- 003
- CZ-PrNML
- 005
- 20220517110244.0
- 007
- cr|cn|
- 008
- 180228s2018 xr d fs 000 0|eng||
- 009
- eAR
- 024 7_
- $a 10.24105/ejbi.2018.14.1.3 $2 doi
- 040 __
- $a ABA008 $d ABA008 $e AACR2 $b cze
- 041 0_
- $a eng
- 044 __
- $a xr
- 100 1_
- $a Hu, Yuh-Jyh $u Department of Computer Science, National Chiao Tung University, 1001 University Rd, Hsinchu, Taiwan; Institute of Biomedical Engineering, National Chiao Tung University, 1001 University Rd, Hsinchu, Taiwan
- 245 10
- $a Computational ensemble approach for immune system study: Conformational B-cell epitope prediction / $c Yuh-Jyh Hu, Shun-Ning You, Chu-Ling Ko
- 504 __
- $a Literatura
- 520 9_
- $a Various tools have been developed to predict B-cell epitopes. We proposed a multistrategy approach by integrating two ensemble learning techniques, namely bagging and meta-decision tree, with a threshold-based cost-sensitive method. By exploiting the synergy among multiple retrainable inductive learners, it directly learns a tree-like classification architecture from the data, and is not limited by a prespecified structure. In addition, we introduced a new three-dimensional sphere-based structural feature to improve the window-based linear features for increased residue description. We performed independent and cross-validation tests, and compared with previous ensemble meta-learners and state-of-the-art B-cell epitope prediction tools using bound-state and unboundstate antigens. The results demonstrated the superior performance of the bagging meta-decision tree approach compared with single epitope predictors, and showed performance comparable to previous meta-learners. The new approach—requiring no predictions from other B-cell epitope tools—is more flexible and applicable than are previous meta-learners relying on specific pretrained B-cell epitope prediction tools.
- 650 _2
- $a výpočetní biologie $7 D019295
- 650 _2
- $a strojové učení $7 D000069550
- 650 _2
- $a epitopy B-lymfocytární $x imunologie $x klasifikace $7 D018985
- 650 _2
- $a rozhodovací stromy $7 D003663
- 650 _2
- $a peptidy $x imunologie $x klasifikace $7 D010455
- 653 00
- $a ensemble learning
- 653 00
- $a meta-decision tree
- 700 1_
- $a You, Shun-Ning $u Department of Computer Science, National Chiao Tung University, 1001 University Rd, Hsinchu, Taiwan
- 700 1_
- $a Ko, Chu-Ling $u Department of Computer Science, National Chiao Tung University, 1001 University Rd, Hsinchu, Taiwan
- 773 0_
- $t European journal for biomedical informatics $x 1801-5603 $g Roč. 14, č. 1 (2018), s. 4-15 $w MED00173462
- 856 41
- $u https://www.ejbi.org/scholarly-articles/computational-ensemble-approach-for-immune-system-studyconformational-bcell-epitope-prediction.pdf $y domovská stránka časopisu - plný text volně přístupný
- 910 __
- $a ABA008 $b online $y p $z 0
- 990 __
- $a 20180228064000 $b ABA008
- 991 __
- $a 20220517110241 $b ABA008
- 999 __
- $a ok $b bmc $g 1278896 $s 1002946
- BAS __
- $a 3 $a 4
- BMC __
- $a 2018 $b 14 $c 1 $d 4-15 $i 1801-5603 $m European Journal for Biomedical Informatics $n Eur. J. Biomed. Inform. (Praha) $x MED00173462
- LZP __
- $c NLK125 $d 20210104 $a NLK 2018-13/vt