Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Computational ensemble approach for immune system study: Conformational B-cell epitope prediction

Yuh-Jyh Hu, Shun-Ning You, Chu-Ling Ko

. 2018 ; 14 (1) : 4-15.

Jazyk angličtina Země Česko

Perzistentní odkaz   https://www.medvik.cz/link/bmc18006191

Various tools have been developed to predict B-cell epitopes. We proposed a multistrategy approach by integrating two ensemble learning techniques, namely bagging and meta-decision tree, with a threshold-based cost-sensitive method. By exploiting the synergy among multiple retrainable inductive learners, it directly learns a tree-like classification architecture from the data, and is not limited by a prespecified structure. In addition, we introduced a new three-dimensional sphere-based structural feature to improve the window-based linear features for increased residue description. We performed independent and cross-validation tests, and compared with previous ensemble meta-learners and state-of-the-art B-cell epitope prediction tools using bound-state and unboundstate antigens. The results demonstrated the superior performance of the bagging meta-decision tree approach compared with single epitope predictors, and showed performance comparable to previous meta-learners. The new approach—requiring no predictions from other B-cell epitope tools—is more flexible and applicable than are previous meta-learners relying on specific pretrained B-cell epitope prediction tools.

Citace poskytuje Crossref.org

Bibliografie atd.

Literatura

000      
00000naa a2200000 a 4500
001      
bmc18006191
003      
CZ-PrNML
005      
20220517110244.0
007      
cr|cn|
008      
180228s2018 xr d fs 000 0|eng||
009      
eAR
024    7_
$a 10.24105/ejbi.2018.14.1.3 $2 doi
040    __
$a ABA008 $d ABA008 $e AACR2 $b cze
041    0_
$a eng
044    __
$a xr
100    1_
$a Hu, Yuh-Jyh $u Department of Computer Science, National Chiao Tung University, 1001 University Rd, Hsinchu, Taiwan; Institute of Biomedical Engineering, National Chiao Tung University, 1001 University Rd, Hsinchu, Taiwan
245    10
$a Computational ensemble approach for immune system study: Conformational B-cell epitope prediction / $c Yuh-Jyh Hu, Shun-Ning You, Chu-Ling Ko
504    __
$a Literatura
520    9_
$a Various tools have been developed to predict B-cell epitopes. We proposed a multistrategy approach by integrating two ensemble learning techniques, namely bagging and meta-decision tree, with a threshold-based cost-sensitive method. By exploiting the synergy among multiple retrainable inductive learners, it directly learns a tree-like classification architecture from the data, and is not limited by a prespecified structure. In addition, we introduced a new three-dimensional sphere-based structural feature to improve the window-based linear features for increased residue description. We performed independent and cross-validation tests, and compared with previous ensemble meta-learners and state-of-the-art B-cell epitope prediction tools using bound-state and unboundstate antigens. The results demonstrated the superior performance of the bagging meta-decision tree approach compared with single epitope predictors, and showed performance comparable to previous meta-learners. The new approach—requiring no predictions from other B-cell epitope tools—is more flexible and applicable than are previous meta-learners relying on specific pretrained B-cell epitope prediction tools.
650    _2
$a výpočetní biologie $7 D019295
650    _2
$a strojové učení $7 D000069550
650    _2
$a epitopy B-lymfocytární $x imunologie $x klasifikace $7 D018985
650    _2
$a rozhodovací stromy $7 D003663
650    _2
$a peptidy $x imunologie $x klasifikace $7 D010455
653    00
$a ensemble learning
653    00
$a meta-decision tree
700    1_
$a You, Shun-Ning $u Department of Computer Science, National Chiao Tung University, 1001 University Rd, Hsinchu, Taiwan
700    1_
$a Ko, Chu-Ling $u Department of Computer Science, National Chiao Tung University, 1001 University Rd, Hsinchu, Taiwan
773    0_
$t European journal for biomedical informatics $x 1801-5603 $g Roč. 14, č. 1 (2018), s. 4-15 $w MED00173462
856    41
$u https://www.ejbi.org/scholarly-articles/computational-ensemble-approach-for-immune-system-studyconformational-bcell-epitope-prediction.pdf $y domovská stránka časopisu - plný text volně přístupný
910    __
$a ABA008 $b online $y p $z 0
990    __
$a 20180228064000 $b ABA008
991    __
$a 20220517110241 $b ABA008
999    __
$a ok $b bmc $g 1278896 $s 1002946
BAS    __
$a 3 $a 4
BMC    __
$a 2018 $b 14 $c 1 $d 4-15 $i 1801-5603 $m European Journal for Biomedical Informatics $n Eur. J. Biomed. Inform. (Praha) $x MED00173462
LZP    __
$c NLK125 $d 20210104 $a NLK 2018-13/vt

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...