-
Je něco špatně v tomto záznamu ?
Transparent Nanotubular TiO₂ Photoanodes Grown Directly on FTO Substrates
Š. Paušová, Š. Kment, M. Zlámal, M. Baudys, Z. Hubička, J. Krýsa,
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články
NLK
Directory of Open Access Journals
od 1997
Free Medical Journals
od 1997
PubMed Central
od 2001
Europe PubMed Central
od 2001
ProQuest Central
od 1997-01-01
Open Access Digital Library
od 1997-01-01
Medline Complete (EBSCOhost)
od 2009-03-01
Health & Medicine (ProQuest)
od 1997-01-01
- MeSH
- elektrody MeSH
- ethylenglykol chemie MeSH
- fluor chemie MeSH
- fluoridy chemie MeSH
- fotochemické procesy MeSH
- kvartérní amoniové sloučeniny chemie MeSH
- nanotechnologie metody MeSH
- nanotrubičky chemie ultrastruktura MeSH
- sloučeniny cínu chemie MeSH
- sluneční energie MeSH
- titan chemie MeSH
- Publikační typ
- časopisecké články MeSH
This work describes the preparation of transparent TiO₂ nanotube (TNT) arrays on fluorine-doped tin oxide (FTO) substrates. An optimized electrolyte composition (0.2 mol dm-3NH₄F and 4 mol dm-3H₂O in ethylene glycol) was used for the anodization of Ti films with different thicknesses (from 100 to 1300 nm) sputtered on the FTO glass substrates. For Ti thicknesses 600 nm and higher, anodization resulted in the formation of TNT arrays with an outer nanotube diameter around 180 nm and a wall thickness around 45 nm, while for anodized Ti thicknesses of 100 nm, the produced nanotubes were not well defined. The transmittance in the visible region (λ = 500 nm) varied from 90% for the thinnest TNT array to 65% for the thickest TNT array. For the fabrication of transparent TNT arrays by anodization, the optimal Ti thickness on FTO was around 1000 nm. Such fabricated TNT arrays with a length of 2500 nm exhibit stable photocurrent densities in aqueous electrolytes (~300 µA cm-2at potential 0.5 V vs. Ag/AgCl). The stability of the photocurrent response and a sufficient transparency (≥65%) enables the use of transparent TNT arrays in photoelectrochemical applications when the illumination from the support/semiconductor interface is a necessary condition and the transmitted light can be used for another purpose (photocathode or photochemical reaction in the electrolyte).
Palacký University RCPTM Joint Laboratory of Optics 17 Listopadu 12 771 46 Olomouc Czech Republic
University of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18010583
- 003
- CZ-PrNML
- 005
- 20180404142128.0
- 007
- ta
- 008
- 180404s2017 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/molecules22050775 $2 doi
- 035 __
- $a (PubMed)28489038
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Paušová, Šárka $u University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic. sarka.pausova@vscht.cz.
- 245 10
- $a Transparent Nanotubular TiO₂ Photoanodes Grown Directly on FTO Substrates / $c Š. Paušová, Š. Kment, M. Zlámal, M. Baudys, Z. Hubička, J. Krýsa,
- 520 9_
- $a This work describes the preparation of transparent TiO₂ nanotube (TNT) arrays on fluorine-doped tin oxide (FTO) substrates. An optimized electrolyte composition (0.2 mol dm-3NH₄F and 4 mol dm-3H₂O in ethylene glycol) was used for the anodization of Ti films with different thicknesses (from 100 to 1300 nm) sputtered on the FTO glass substrates. For Ti thicknesses 600 nm and higher, anodization resulted in the formation of TNT arrays with an outer nanotube diameter around 180 nm and a wall thickness around 45 nm, while for anodized Ti thicknesses of 100 nm, the produced nanotubes were not well defined. The transmittance in the visible region (λ = 500 nm) varied from 90% for the thinnest TNT array to 65% for the thickest TNT array. For the fabrication of transparent TNT arrays by anodization, the optimal Ti thickness on FTO was around 1000 nm. Such fabricated TNT arrays with a length of 2500 nm exhibit stable photocurrent densities in aqueous electrolytes (~300 µA cm-2at potential 0.5 V vs. Ag/AgCl). The stability of the photocurrent response and a sufficient transparency (≥65%) enables the use of transparent TNT arrays in photoelectrochemical applications when the illumination from the support/semiconductor interface is a necessary condition and the transmitted light can be used for another purpose (photocathode or photochemical reaction in the electrolyte).
- 650 _2
- $a elektrody $7 D004566
- 650 _2
- $a ethylenglykol $x chemie $7 D019855
- 650 _2
- $a fluoridy $x chemie $7 D005459
- 650 _2
- $a fluor $x chemie $7 D005461
- 650 _2
- $a nanotechnologie $x metody $7 D036103
- 650 _2
- $a nanotrubičky $x chemie $x ultrastruktura $7 D043942
- 650 _2
- $a fotochemické procesy $7 D055668
- 650 _2
- $a kvartérní amoniové sloučeniny $x chemie $7 D000644
- 650 _2
- $a sluneční energie $7 D012993
- 650 _2
- $a sloučeniny cínu $x chemie $7 D017971
- 650 _2
- $a titan $x chemie $7 D014025
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Kment, Štěpán $u Palacký University, RCPTM, Joint Laboratory of Optics, 17. Listopadu 12, 771 46 Olomouc, Czech Republic. stepan.kment@upol.cz.
- 700 1_
- $a Zlámal, Martin $u University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic. zlamalm@vscht.cz.
- 700 1_
- $a Baudys, Michal $u University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic. baudysm@vscht.cz.
- 700 1_
- $a Hubička, Zdeněk $u Palacký University, RCPTM, Joint Laboratory of Optics, 17. Listopadu 12, 771 46 Olomouc, Czech Republic. hubicka@fzu.cz.
- 700 1_
- $a Krýsa, Josef $u University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic. josef.krysa@vscht.cz.
- 773 0_
- $w MED00180394 $t Molecules (Basel, Switzerland) $x 1420-3049 $g Roč. 22, č. 5 (2017)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28489038 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180404 $b ABA008
- 991 __
- $a 20180404142208 $b ABA008
- 999 __
- $a ok $b bmc $g 1288068 $s 1007395
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 22 $c 5 $e 20170510 $i 1420-3049 $m Molecules $n Molecules $x MED00180394
- LZP __
- $a Pubmed-20180404