Transparent Nanotubular TiO₂ Photoanodes Grown Directly on FTO Substrates

. 2017 May 10 ; 22 (5) : . [epub] 20170510

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28489038

This work describes the preparation of transparent TiO₂ nanotube (TNT) arrays on fluorine-doped tin oxide (FTO) substrates. An optimized electrolyte composition (0.2 mol dm-3 NH₄F and 4 mol dm-3 H₂O in ethylene glycol) was used for the anodization of Ti films with different thicknesses (from 100 to 1300 nm) sputtered on the FTO glass substrates. For Ti thicknesses 600 nm and higher, anodization resulted in the formation of TNT arrays with an outer nanotube diameter around 180 nm and a wall thickness around 45 nm, while for anodized Ti thicknesses of 100 nm, the produced nanotubes were not well defined. The transmittance in the visible region (λ = 500 nm) varied from 90% for the thinnest TNT array to 65% for the thickest TNT array. For the fabrication of transparent TNT arrays by anodization, the optimal Ti thickness on FTO was around 1000 nm. Such fabricated TNT arrays with a length of 2500 nm exhibit stable photocurrent densities in aqueous electrolytes (~300 µA cm-2 at potential 0.5 V vs. Ag/AgCl). The stability of the photocurrent response and a sufficient transparency (≥65%) enables the use of transparent TNT arrays in photoelectrochemical applications when the illumination from the support/semiconductor interface is a necessary condition and the transmitted light can be used for another purpose (photocathode or photochemical reaction in the electrolyte).

Zobrazit více v PubMed

Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37–38. doi: 10.1038/238037a0. PubMed DOI

Roy P., Berger S., Schmuki P. TiO2 nanotubes: Synthesis and applications. Angew. Chem. Int. Ed. 2011;50:2904–2939. doi: 10.1002/anie.201001374. PubMed DOI

Macak J.M., Tsuchiya H., Ghicov A., Yasuda K., Hahn R., Bauer S., Schmuki P. TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Curr. Opin. Solid State Mater. Sci. 2007;11:3–18. doi: 10.1016/j.cossms.2007.08.004. DOI

Grimes C.A., Mor G.K. TiO2 Nanotube Arrays: Synthesis, Properties, and Applications. Springer; New York, NY, USA: 2009.

Kasuga T., Hiramatsu M., Hoson A., Sekino T., Niihara K. Formation of titanium oxide nanotube. Langmuir. 1998;14:3160–3163. doi: 10.1021/la9713816. DOI

Mor G.K., Varghese O.K., Paulose M., Grimes C.A. Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films. Adv. Funct. Mater. 2005;15:1291–1296. doi: 10.1002/adfm.200500096. DOI

Kathirvel S., Su C., Yang C.-Y., Shiao Y.-J., Chen B.-R., Li W.-R. The growth of TiO2 nanotubes from sputter-deposited ti film on transparent conducting glass for photovoltaic applications. Vacuum. 2015;118:17–25. doi: 10.1016/j.vacuum.2014.12.024. DOI

Albu S.P., Schmuki P. Influence of anodization parameters on the expansion factor of TiO2 nanotubes. Electrochim. Acta. 2013;91:90–95. doi: 10.1016/j.electacta.2012.12.094. DOI

Szkoda M., Lisowska-Oleksiak A., Grochowska K., Skowroński Ł., Karczewski J., Siuzdak K. Semi-transparent ordered TiO2 nanostructures prepared by anodization of titanium thin films deposited onto the fto substrate. Appl. Surf. Sci. 2016;381:36–41. doi: 10.1016/j.apsusc.2015.12.126. DOI

Hoyer P. Formation of a titanium dioxide nanotube array. Langmuir. 1996;12:1411–1413. doi: 10.1021/la9507803. DOI

Jinsoo K., Jonghyun K., Myeongkyu L. Laser welding of nanoparticulate TiO2 and transparent conducting oxide electrodes for highly efficient dye-sensitized solar cell. Nanotechnology. 2010;21:345203. PubMed

Lin C.-J., Yu W.-Y., Chien S.-H. Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye-sensitized solar cells. J. Mater. Chem. 2010;20:1073–1077. doi: 10.1039/B917886D. DOI

Kim J.Y., Noh J.H., Zhu K., Halverson A.F., Neale N.R., Park S., Hong K.S., Frank A.J. General strategy for fabricating transparent TiO2 nanotube arrays for dye-sensitized photoelectrodes: Illumination geometry and transport properties. ACS Nano. 2011;5:2647–2656. doi: 10.1021/nn200440u. PubMed DOI

Krysa J., Zlamal M., Kment S., Brunclikova M., Hubicka Z. TiO2 and Fe2O3 films for photoelectrochemical water splitting. Molecules. 2015;20:1046–1058. doi: 10.3390/molecules20011046. PubMed DOI PMC

Freitas R.G., Santanna M.A., Pereira E.C. Dependence of TiO2 nanotube microstructural and electronic properties on water splitting. J. Power Source. 2014;251:178–186. doi: 10.1016/j.jpowsour.2013.11.067. DOI

Cho I.S., Chen Z., Forman A.J., Kim D.R., Rao P.M., Jaramillo T.F., Zheng X. Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 2011;11:4978–4984. doi: 10.1021/nl2029392. PubMed DOI

Lei B.-X., Liao J.-Y., Zhang R., Wang J., Su C.-Y., Kuang D.-B. Ordered crystalline TiO2 nanotube arrays on transparent fto glass for efficient dye-sensitized solar cells. J. Phys Chem C. 2010;114:15228–15233. doi: 10.1021/jp105780v. DOI

Abdi F.F., Firet N., Dabirian A., van de Krol R. Spray-deposited co-pi catalyzed bivo4: A low-cost route towards highly efficient photoanodes. MRS Proc. 2012;1446 doi: 10.1557/opl.2012.811. DOI

Chappanda K., Smith Y., Mohanty S., Rieth L., Tathireddy P., Misra M. Growth and characterization of tio2 nanotubes from sputtered ti film on si substrate. Nanoscale Res. Lett. 2012;7:1–8. doi: 10.1186/1556-276X-7-388. PubMed DOI PMC

Tang Y., Tao J., Zhang Y., Wu T., Tao H., Bao Z. Preparation and characterization of TiO2 nanotube arrays via anodization of titanium films deposited on fto conducting glass at room temperature. Acta Phys.-Chim. Sin. 2008;24:2191–2197. doi: 10.1016/S1872-1508(08)60082-0. DOI

Pugliese D., Lamberti A., Bella F., Sacco A., Bianco S., Tresso E. TiO2 nanotubes as flexible photoanode for back-illuminated dye-sensitized solar cells with hemi-squaraine organic dye and iodine-free transparent electrolyte. Org. Electron. 2014;15:3715–3722. doi: 10.1016/j.orgel.2014.10.018. DOI

Bai J., Li J., Liu Y., Zhou B., Cai W. A new glass substrate photoelectrocatalytic electrode for efficient visible-light hydrogen production: Cds sensitized TiO2 nanotube arrays. Appl. Catal. B Environ. 2010;95:408–413. doi: 10.1016/j.apcatb.2010.01.020. DOI

Krumpmann A., Dervaux J., Derue L., Douhéret O., Lazzaroni R., Snyders R., Decroly A. Influence of a sputtered compact TiO2 layer on the properties of TiO2 nanotube photoanodes for solid-state dsscs. Mate. Des. 2017;120:298–306. doi: 10.1016/j.matdes.2017.02.028. DOI

Lim S.L., Liu Y., Li J., Kang E.-T., Ong C.K. Transparent titania nanotubes of micrometer length prepared by anodization of titanium thin film deposited on ito. Appl. Surf. Sci. 2011;257:6612–6617. doi: 10.1016/j.apsusc.2011.02.087. DOI

Krysa J., Lee K., Pausova S., Kment S., Hubicka Z., Ctvrtlik R., Schmuki P. Self-organized transparent 1d TiO2 nanotubular photoelectrodes grown by anodization of sputtered and evaporated ti layers: A comparative photoelectrochemical study. Chem. Eng. J. 2017;308:745–753. doi: 10.1016/j.cej.2016.09.112. DOI

Ratnawati, Gunlazuardi J., Slamet Development of titania nanotube arrays: The roles of water content and annealing atmosphere. Mater. Chem. Phys. 2015;160:111–118.

Tsui L.-K., Homma T., Zangari G. Photocurrent conversion in anodized TiO2 nanotube arrays: Effect of the water content in anodizing solutions. J. Phys. Chem. C. 2013;117:6979–6989. doi: 10.1021/jp400318n. DOI

Acevedo-Peña P., Lartundo-Rojas L., González I. Effect of water and fluoride content on morphology and barrier layer properties of TiO2 nanotubes grown in ethylene glycol-based electrolytes. J. Solid State Electrochem. 2013;17:2939–2947. doi: 10.1007/s10008-013-2212-2. DOI

Krýsa J., Baudys M., Mills A. Quantum yield measurements for the photocatalytic oxidation of acid orange 7 (ao7) and reduction of 2,6-dichlorindophenol (dcip) on transparent TiO2 films of various thickness. Catal. Today. 2015;240:132–137. doi: 10.1016/j.cattod.2014.04.019. DOI

Kuzmych O., Nonomura K., Johansson E.M.J., Nyberg T., Hagfeldt A., Skompska M. Defect minimization and morphology optimization in TiO2 nanotube thin films, grown on transparent conducting substrate, for dye synthesized solar cell application. Thin Solid Films. 2012;522:71–78. doi: 10.1016/j.tsf.2012.09.011. DOI

Kang Q., Liu S., Yang L., Cai Q., Grimes C.A. Fabrication of pbs nanoparticle-sensitized TiO2 nanotube arrays and their photoelectrochemical properties. ACS Appl. Mater. Interfaces. 2011;3:746–749. doi: 10.1021/am101086t. PubMed DOI

Mills A., Hepburn J., Hazafy D., O’Rourke C., Krysa J., Baudys M., Zlamal M., Bartkova H., Hill C.E., Winn K.R., et al. A simple, inexpensive method for the rapid testing of the photocatalytic activity of self-cleaning surfaces. J. Photochem. Photobiol. A Chem. 2013;272:18–20. doi: 10.1016/j.jphotochem.2013.08.004. DOI

Mills A., Hepburn J., Hazafy D., O’Rourke C., Wells N., Krysa J., Baudys M., Zlamal M., Bartkova H., Hill C.E., et al. Photocatalytic activity indicator inks for probing a wide range of surfaces. J. Photochem. Photobiol. A Chem. 2014;290:63–71.

Baudys M., Krýsa J., Mills A. Smart inks as photocatalytic activity indicators of self-cleaning paints. Catal. Today. 2017;280:8–13. doi: 10.1016/j.cattod.2016.04.041. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...