Transparent Nanotubular TiO₂ Photoanodes Grown Directly on FTO Substrates
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28489038
PubMed Central
PMC6154507
DOI
10.3390/molecules22050775
PII: molecules22050775
Knihovny.cz E-zdroje
- Klíčová slova
- FTO, TiO2, anodization, nanotubular, photocurrent, sputtered Ti, transparent,
- MeSH
- amoniové sloučeniny MeSH
- elektrody MeSH
- ethylenglykol chemie MeSH
- fluor chemie MeSH
- fluoridy chemie MeSH
- fotochemické procesy MeSH
- kvartérní amoniové sloučeniny chemie MeSH
- nanotechnologie metody MeSH
- nanotrubičky chemie ultrastruktura MeSH
- sloučeniny cínu chemie MeSH
- sluneční energie MeSH
- titan chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ammonium fluoride MeSH Prohlížeč
- amoniové sloučeniny MeSH
- ethylenglykol MeSH
- fluor MeSH
- fluoridy MeSH
- kvartérní amoniové sloučeniny MeSH
- sloučeniny cínu MeSH
- stannic oxide MeSH Prohlížeč
- titan MeSH
- titanium dioxide MeSH Prohlížeč
This work describes the preparation of transparent TiO₂ nanotube (TNT) arrays on fluorine-doped tin oxide (FTO) substrates. An optimized electrolyte composition (0.2 mol dm-3 NH₄F and 4 mol dm-3 H₂O in ethylene glycol) was used for the anodization of Ti films with different thicknesses (from 100 to 1300 nm) sputtered on the FTO glass substrates. For Ti thicknesses 600 nm and higher, anodization resulted in the formation of TNT arrays with an outer nanotube diameter around 180 nm and a wall thickness around 45 nm, while for anodized Ti thicknesses of 100 nm, the produced nanotubes were not well defined. The transmittance in the visible region (λ = 500 nm) varied from 90% for the thinnest TNT array to 65% for the thickest TNT array. For the fabrication of transparent TNT arrays by anodization, the optimal Ti thickness on FTO was around 1000 nm. Such fabricated TNT arrays with a length of 2500 nm exhibit stable photocurrent densities in aqueous electrolytes (~300 µA cm-2 at potential 0.5 V vs. Ag/AgCl). The stability of the photocurrent response and a sufficient transparency (≥65%) enables the use of transparent TNT arrays in photoelectrochemical applications when the illumination from the support/semiconductor interface is a necessary condition and the transmitted light can be used for another purpose (photocathode or photochemical reaction in the electrolyte).
Palacký University RCPTM Joint Laboratory of Optics 17 Listopadu 12 771 46 Olomouc Czech Republic
University of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
Zobrazit více v PubMed
Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37–38. doi: 10.1038/238037a0. PubMed DOI
Roy P., Berger S., Schmuki P. TiO2 nanotubes: Synthesis and applications. Angew. Chem. Int. Ed. 2011;50:2904–2939. doi: 10.1002/anie.201001374. PubMed DOI
Macak J.M., Tsuchiya H., Ghicov A., Yasuda K., Hahn R., Bauer S., Schmuki P. TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Curr. Opin. Solid State Mater. Sci. 2007;11:3–18. doi: 10.1016/j.cossms.2007.08.004. DOI
Grimes C.A., Mor G.K. TiO2 Nanotube Arrays: Synthesis, Properties, and Applications. Springer; New York, NY, USA: 2009.
Kasuga T., Hiramatsu M., Hoson A., Sekino T., Niihara K. Formation of titanium oxide nanotube. Langmuir. 1998;14:3160–3163. doi: 10.1021/la9713816. DOI
Mor G.K., Varghese O.K., Paulose M., Grimes C.A. Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films. Adv. Funct. Mater. 2005;15:1291–1296. doi: 10.1002/adfm.200500096. DOI
Kathirvel S., Su C., Yang C.-Y., Shiao Y.-J., Chen B.-R., Li W.-R. The growth of TiO2 nanotubes from sputter-deposited ti film on transparent conducting glass for photovoltaic applications. Vacuum. 2015;118:17–25. doi: 10.1016/j.vacuum.2014.12.024. DOI
Albu S.P., Schmuki P. Influence of anodization parameters on the expansion factor of TiO2 nanotubes. Electrochim. Acta. 2013;91:90–95. doi: 10.1016/j.electacta.2012.12.094. DOI
Szkoda M., Lisowska-Oleksiak A., Grochowska K., Skowroński Ł., Karczewski J., Siuzdak K. Semi-transparent ordered TiO2 nanostructures prepared by anodization of titanium thin films deposited onto the fto substrate. Appl. Surf. Sci. 2016;381:36–41. doi: 10.1016/j.apsusc.2015.12.126. DOI
Hoyer P. Formation of a titanium dioxide nanotube array. Langmuir. 1996;12:1411–1413. doi: 10.1021/la9507803. DOI
Jinsoo K., Jonghyun K., Myeongkyu L. Laser welding of nanoparticulate TiO2 and transparent conducting oxide electrodes for highly efficient dye-sensitized solar cell. Nanotechnology. 2010;21:345203. PubMed
Lin C.-J., Yu W.-Y., Chien S.-H. Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye-sensitized solar cells. J. Mater. Chem. 2010;20:1073–1077. doi: 10.1039/B917886D. DOI
Kim J.Y., Noh J.H., Zhu K., Halverson A.F., Neale N.R., Park S., Hong K.S., Frank A.J. General strategy for fabricating transparent TiO2 nanotube arrays for dye-sensitized photoelectrodes: Illumination geometry and transport properties. ACS Nano. 2011;5:2647–2656. doi: 10.1021/nn200440u. PubMed DOI
Krysa J., Zlamal M., Kment S., Brunclikova M., Hubicka Z. TiO2 and Fe2O3 films for photoelectrochemical water splitting. Molecules. 2015;20:1046–1058. doi: 10.3390/molecules20011046. PubMed DOI PMC
Freitas R.G., Santanna M.A., Pereira E.C. Dependence of TiO2 nanotube microstructural and electronic properties on water splitting. J. Power Source. 2014;251:178–186. doi: 10.1016/j.jpowsour.2013.11.067. DOI
Cho I.S., Chen Z., Forman A.J., Kim D.R., Rao P.M., Jaramillo T.F., Zheng X. Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 2011;11:4978–4984. doi: 10.1021/nl2029392. PubMed DOI
Lei B.-X., Liao J.-Y., Zhang R., Wang J., Su C.-Y., Kuang D.-B. Ordered crystalline TiO2 nanotube arrays on transparent fto glass for efficient dye-sensitized solar cells. J. Phys Chem C. 2010;114:15228–15233. doi: 10.1021/jp105780v. DOI
Abdi F.F., Firet N., Dabirian A., van de Krol R. Spray-deposited co-pi catalyzed bivo4: A low-cost route towards highly efficient photoanodes. MRS Proc. 2012;1446 doi: 10.1557/opl.2012.811. DOI
Chappanda K., Smith Y., Mohanty S., Rieth L., Tathireddy P., Misra M. Growth and characterization of tio2 nanotubes from sputtered ti film on si substrate. Nanoscale Res. Lett. 2012;7:1–8. doi: 10.1186/1556-276X-7-388. PubMed DOI PMC
Tang Y., Tao J., Zhang Y., Wu T., Tao H., Bao Z. Preparation and characterization of TiO2 nanotube arrays via anodization of titanium films deposited on fto conducting glass at room temperature. Acta Phys.-Chim. Sin. 2008;24:2191–2197. doi: 10.1016/S1872-1508(08)60082-0. DOI
Pugliese D., Lamberti A., Bella F., Sacco A., Bianco S., Tresso E. TiO2 nanotubes as flexible photoanode for back-illuminated dye-sensitized solar cells with hemi-squaraine organic dye and iodine-free transparent electrolyte. Org. Electron. 2014;15:3715–3722. doi: 10.1016/j.orgel.2014.10.018. DOI
Bai J., Li J., Liu Y., Zhou B., Cai W. A new glass substrate photoelectrocatalytic electrode for efficient visible-light hydrogen production: Cds sensitized TiO2 nanotube arrays. Appl. Catal. B Environ. 2010;95:408–413. doi: 10.1016/j.apcatb.2010.01.020. DOI
Krumpmann A., Dervaux J., Derue L., Douhéret O., Lazzaroni R., Snyders R., Decroly A. Influence of a sputtered compact TiO2 layer on the properties of TiO2 nanotube photoanodes for solid-state dsscs. Mate. Des. 2017;120:298–306. doi: 10.1016/j.matdes.2017.02.028. DOI
Lim S.L., Liu Y., Li J., Kang E.-T., Ong C.K. Transparent titania nanotubes of micrometer length prepared by anodization of titanium thin film deposited on ito. Appl. Surf. Sci. 2011;257:6612–6617. doi: 10.1016/j.apsusc.2011.02.087. DOI
Krysa J., Lee K., Pausova S., Kment S., Hubicka Z., Ctvrtlik R., Schmuki P. Self-organized transparent 1d TiO2 nanotubular photoelectrodes grown by anodization of sputtered and evaporated ti layers: A comparative photoelectrochemical study. Chem. Eng. J. 2017;308:745–753. doi: 10.1016/j.cej.2016.09.112. DOI
Ratnawati, Gunlazuardi J., Slamet Development of titania nanotube arrays: The roles of water content and annealing atmosphere. Mater. Chem. Phys. 2015;160:111–118.
Tsui L.-K., Homma T., Zangari G. Photocurrent conversion in anodized TiO2 nanotube arrays: Effect of the water content in anodizing solutions. J. Phys. Chem. C. 2013;117:6979–6989. doi: 10.1021/jp400318n. DOI
Acevedo-Peña P., Lartundo-Rojas L., González I. Effect of water and fluoride content on morphology and barrier layer properties of TiO2 nanotubes grown in ethylene glycol-based electrolytes. J. Solid State Electrochem. 2013;17:2939–2947. doi: 10.1007/s10008-013-2212-2. DOI
Krýsa J., Baudys M., Mills A. Quantum yield measurements for the photocatalytic oxidation of acid orange 7 (ao7) and reduction of 2,6-dichlorindophenol (dcip) on transparent TiO2 films of various thickness. Catal. Today. 2015;240:132–137. doi: 10.1016/j.cattod.2014.04.019. DOI
Kuzmych O., Nonomura K., Johansson E.M.J., Nyberg T., Hagfeldt A., Skompska M. Defect minimization and morphology optimization in TiO2 nanotube thin films, grown on transparent conducting substrate, for dye synthesized solar cell application. Thin Solid Films. 2012;522:71–78. doi: 10.1016/j.tsf.2012.09.011. DOI
Kang Q., Liu S., Yang L., Cai Q., Grimes C.A. Fabrication of pbs nanoparticle-sensitized TiO2 nanotube arrays and their photoelectrochemical properties. ACS Appl. Mater. Interfaces. 2011;3:746–749. doi: 10.1021/am101086t. PubMed DOI
Mills A., Hepburn J., Hazafy D., O’Rourke C., Krysa J., Baudys M., Zlamal M., Bartkova H., Hill C.E., Winn K.R., et al. A simple, inexpensive method for the rapid testing of the photocatalytic activity of self-cleaning surfaces. J. Photochem. Photobiol. A Chem. 2013;272:18–20. doi: 10.1016/j.jphotochem.2013.08.004. DOI
Mills A., Hepburn J., Hazafy D., O’Rourke C., Wells N., Krysa J., Baudys M., Zlamal M., Bartkova H., Hill C.E., et al. Photocatalytic activity indicator inks for probing a wide range of surfaces. J. Photochem. Photobiol. A Chem. 2014;290:63–71.
Baudys M., Krýsa J., Mills A. Smart inks as photocatalytic activity indicators of self-cleaning paints. Catal. Today. 2017;280:8–13. doi: 10.1016/j.cattod.2016.04.041. DOI