• Je něco špatně v tomto záznamu ?

Delayed hemoglobin switching and perinatal neocytolysis in mice with gain-of-function erythropoietin receptor

V. Divoky, J. Song, M. Horvathova, B. Kralova, H. Votavova, JT. Prchal, D. Yoon,

. 2016 ; 94 (5) : 597-608. [pub] 20151226

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S., práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc18011320
E-zdroje Online Plný text

NLK ProQuest Central od 1997-01-01 do Před 1 rokem
Medline Complete (EBSCOhost) od 2000-01-01 do Před 1 rokem
Health & Medicine (ProQuest) od 1997-01-01 do Před 1 rokem

UNLABELLED: Mutations of the truncated cytoplasmic domain of human erythropoietin receptor (EPOR) result in gain-of-function of erythropoietin (EPO) signaling and a dominantly inherited polycythemia, primary familial and congenital polycythemia (PFCP). We interrogated the unexplained transient absence of perinatal polycythemia observed in PFCP patients using an animal model of PFCP to examine its erythropoiesis during embryonic, perinatal, and early postnatal periods. In this model, we replaced the murine EpoR gene (mEpoR) with the wild-type human EPOR (wtHEPOR) or mutant human EPOR gene (mtHEPOR) and previously reported that the gain-of-function mtHEPOR mice become polycythemic at 3~6 weeks of age, but not at birth, similar to the phenotype of PFCP patients. In contrast, wtHEPOR mice had sustained anemia. We report that the mtHEPOR fetuses are polycythemic, but their polycythemia is abrogated in the perinatal period and reappears again at 3 weeks after birth. mtHEPOR fetuses have a delayed switch from primitive to definitive erythropoiesis, augmented erythropoietin signaling, and prolonged Stat5 phosphorylation while the wtHEPOR fetuses are anemic. Our study demonstrates the in vivo effect of excessive EPO/EPOR signaling on developmental erythropoiesis switch and describes that fetal polycythemia in this PFCP model is followed by transient correction of polycythemia in perinatal life associated with low Epo levels and increased exposure of erythrocytes' phosphatidylserine. We suggest that neocytolysis contributes to the observed perinatal correction of polycythemia in mtHEPOR newborns as embryos leaving the hypoxic uterus are exposed to normoxia at birth. KEY MESSAGE: Human gain-of-function EPOR (mtHEPOR) causes fetal polycythemia in knock-in mice. Wild-type human EPOR causes fetal anemia in knock-in mouse model. mtHEPOR mice have delayed switch from primitive to definitive erythropoiesis. Polycythemia of mtHEPOR mice is transiently corrected in perinatal life. mtHEPOR newborns have low Epo and increased exposure of erythrocytes' phosphatidylserine.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18011320
003      
CZ-PrNML
005      
20180404142733.0
007      
ta
008      
180404s2016 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s00109-015-1375-y $2 doi
035    __
$a (PubMed)26706855
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Divoky, Vladimir $u Department of Biology, Faculty of Medicine and Dentistry, Palacky University, 775 15, Olomouc, Czech Republic.
245    10
$a Delayed hemoglobin switching and perinatal neocytolysis in mice with gain-of-function erythropoietin receptor / $c V. Divoky, J. Song, M. Horvathova, B. Kralova, H. Votavova, JT. Prchal, D. Yoon,
520    9_
$a UNLABELLED: Mutations of the truncated cytoplasmic domain of human erythropoietin receptor (EPOR) result in gain-of-function of erythropoietin (EPO) signaling and a dominantly inherited polycythemia, primary familial and congenital polycythemia (PFCP). We interrogated the unexplained transient absence of perinatal polycythemia observed in PFCP patients using an animal model of PFCP to examine its erythropoiesis during embryonic, perinatal, and early postnatal periods. In this model, we replaced the murine EpoR gene (mEpoR) with the wild-type human EPOR (wtHEPOR) or mutant human EPOR gene (mtHEPOR) and previously reported that the gain-of-function mtHEPOR mice become polycythemic at 3~6 weeks of age, but not at birth, similar to the phenotype of PFCP patients. In contrast, wtHEPOR mice had sustained anemia. We report that the mtHEPOR fetuses are polycythemic, but their polycythemia is abrogated in the perinatal period and reappears again at 3 weeks after birth. mtHEPOR fetuses have a delayed switch from primitive to definitive erythropoiesis, augmented erythropoietin signaling, and prolonged Stat5 phosphorylation while the wtHEPOR fetuses are anemic. Our study demonstrates the in vivo effect of excessive EPO/EPOR signaling on developmental erythropoiesis switch and describes that fetal polycythemia in this PFCP model is followed by transient correction of polycythemia in perinatal life associated with low Epo levels and increased exposure of erythrocytes' phosphatidylserine. We suggest that neocytolysis contributes to the observed perinatal correction of polycythemia in mtHEPOR newborns as embryos leaving the hypoxic uterus are exposed to normoxia at birth. KEY MESSAGE: Human gain-of-function EPOR (mtHEPOR) causes fetal polycythemia in knock-in mice. Wild-type human EPOR causes fetal anemia in knock-in mouse model. mtHEPOR mice have delayed switch from primitive to definitive erythropoiesis. Polycythemia of mtHEPOR mice is transiently corrected in perinatal life. mtHEPOR newborns have low Epo and increased exposure of erythrocytes' phosphatidylserine.
650    _2
$a anemie $x krev $x genetika $x metabolismus $7 D000740
650    _2
$a zvířata $7 D000818
650    _2
$a erytrocyty $x metabolismus $7 D004912
650    _2
$a erytroidní prekurzorové buňky $x metabolismus $7 D015672
650    _2
$a erytropoéza $x genetika $7 D004920
650    _2
$a erythropoetin $x metabolismus $7 D004921
650    12
$a aktivační mutace $7 D000073659
650    12
$a regulace genové exprese $7 D005786
650    _2
$a genotyp $7 D005838
650    _2
$a hematokrit $7 D006400
650    _2
$a hemoglobiny $x genetika $7 D006454
650    _2
$a lidé $7 D006801
650    _2
$a myši $7 D051379
650    _2
$a myši transgenní $7 D008822
650    _2
$a fosforylace $7 D010766
650    _2
$a polycytemie $x krev $x genetika $x metabolismus $7 D011086
650    _2
$a receptory erythropoetinu $x genetika $x metabolismus $7 D017467
650    _2
$a transkripční faktor STAT5 $x metabolismus $7 D050799
650    _2
$a signální transdukce $7 D015398
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Song, Jihyun $u Hematology Division, Department of Medicine, University of Utah and VAH, Salt Lake City, UT, 84132, USA.
700    1_
$a Horvathova, Monika $u Department of Biology, Faculty of Medicine and Dentistry, Palacky University, 775 15, Olomouc, Czech Republic.
700    1_
$a Kralova, Barbora $u Department of Biology, Faculty of Medicine and Dentistry, Palacky University, 775 15, Olomouc, Czech Republic.
700    1_
$a Votavova, Hana $u Institute of Hematology and Blood Transfusion, 12820, Prague, Czech Republic.
700    1_
$a Prchal, Josef T $u Hematology Division, Department of Medicine, University of Utah and VAH, Salt Lake City, UT, 84132, USA. josef.prchal@hsc.utah.edu.
700    1_
$a Yoon, Donghoon $u Hematology Division, Department of Medicine, University of Utah and VAH, Salt Lake City, UT, 84132, USA. Myeloma Institute University of Arkansas for Medical Science, Little Rock, AR, USA.
773    0_
$w MED00002812 $t Journal of molecular medicine (Berlin, Germany) $x 1432-1440 $g Roč. 94, č. 5 (2016), s. 597-608
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26706855 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180404 $b ABA008
991    __
$a 20180404142812 $b ABA008
999    __
$a ok $b bmc $g 1288805 $s 1008132
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 94 $c 5 $d 597-608 $e 20151226 $i 1432-1440 $m Journal of molecular medicine $n J Mol Med $x MED00002812
LZP    __
$a Pubmed-20180404

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...