-
Je něco špatně v tomto záznamu ?
Semiautomatic extraction of cortical thickness and diaphyseal curvature from CT scans
J. Dupej, A. Lacoste Jeanson, J. Pelikán, J. Brůžek,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28913906
DOI
10.1002/ajpa.23315
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- antropologie fyzická MeSH
- femur diagnostické zobrazování MeSH
- lidé MeSH
- počítačová rentgenová tomografie metody MeSH
- počítačové zpracování obrazu metody MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The understanding of locomotor patterns, activity schemes, and biological variations has been enhanced by the study of the geometrical properties and cortical bone thickness of the long bones measured using CT scan cross-sections. With the development of scanning procedures, the internal architecture of the long bones can be explored along the entire diaphysis. Recently, several methods that map cortical thickness along the whole femoral diaphysis have been developed. Precise homology is vital for statistical examination of the data; however, the repeatability of these methods is unknown and some do not account for the curvature of the bones. We have designed a semiautomatic workflow that improves the morphometric analysis of cortical thickness, including robust data acquisition with minimal user interaction and considering the bone curvature. The proposed algorithm also performs automatic landmark refinement and rigid registration on the extracted morphometric maps of the cortical thickness. Because our algorithm automatically reslices the diaphysis into 100 cross-sections along the medial axis and uses an adaptive thresholding method, it is usable on CT scans that contain soft tissues as well as on bones that have not been oriented specifically prior to scanning. Our approach exhibits considerable robustness to error in user-supplied landmarks, suppresses distortion caused by the curvature of the bones, and calculates the curvature of the medial axis.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18016341
- 003
- CZ-PrNML
- 005
- 20180516105715.0
- 007
- ta
- 008
- 180515s2017 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/ajpa.23315 $2 doi
- 035 __
- $a (PubMed)28913906
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Dupej, Ján $u Department of Anthropology and Human Genetics, Faculty of Sciences, Charles University, Viničná 7, Praha 2, 128 43, Czech Republic. Department of Software and Computer Science Education, Charles University, Faculty of Mathematics and Physics, Malostranské Náměstí 25, Praha 1, 118 00, Czech Republic.
- 245 10
- $a Semiautomatic extraction of cortical thickness and diaphyseal curvature from CT scans / $c J. Dupej, A. Lacoste Jeanson, J. Pelikán, J. Brůžek,
- 520 9_
- $a The understanding of locomotor patterns, activity schemes, and biological variations has been enhanced by the study of the geometrical properties and cortical bone thickness of the long bones measured using CT scan cross-sections. With the development of scanning procedures, the internal architecture of the long bones can be explored along the entire diaphysis. Recently, several methods that map cortical thickness along the whole femoral diaphysis have been developed. Precise homology is vital for statistical examination of the data; however, the repeatability of these methods is unknown and some do not account for the curvature of the bones. We have designed a semiautomatic workflow that improves the morphometric analysis of cortical thickness, including robust data acquisition with minimal user interaction and considering the bone curvature. The proposed algorithm also performs automatic landmark refinement and rigid registration on the extracted morphometric maps of the cortical thickness. Because our algorithm automatically reslices the diaphysis into 100 cross-sections along the medial axis and uses an adaptive thresholding method, it is usable on CT scans that contain soft tissues as well as on bones that have not been oriented specifically prior to scanning. Our approach exhibits considerable robustness to error in user-supplied landmarks, suppresses distortion caused by the curvature of the bones, and calculates the curvature of the medial axis.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a antropologie fyzická $7 D000885
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a femur $x diagnostické zobrazování $7 D005269
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a počítačové zpracování obrazu $x metody $7 D007091
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a počítačová rentgenová tomografie $x metody $7 D014057
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Lacoste Jeanson, Alizé $u Department of Anthropology and Human Genetics, Faculty of Sciences, Charles University, Viničná 7, Praha 2, 128 43, Czech Republic.
- 700 1_
- $a Pelikán, Josef $u Department of Software and Computer Science Education, Charles University, Faculty of Mathematics and Physics, Malostranské Náměstí 25, Praha 1, 118 00, Czech Republic.
- 700 1_
- $a Brůžek, Jaroslav $u Department of Anthropology and Human Genetics, Faculty of Sciences, Charles University, Viničná 7, Praha 2, 128 43, Czech Republic. PACEA, UMR 5199, CNRS, Université de Bordeaux, Bâtiment B8, Allée Geoffroy Saint Hilaire, CS 50023, Talence, F-33400, France.
- 773 0_
- $w MED00000282 $t American journal of physical anthropology $x 1096-8644 $g Roč. 164, č. 4 (2017), s. 868-876
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28913906 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180515 $b ABA008
- 991 __
- $a 20180516105850 $b ABA008
- 999 __
- $a ok $b bmc $g 1299965 $s 1013181
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 164 $c 4 $d 868-876 $e 20170915 $i 1096-8644 $m American journal of physical anthropology $n Am J Phys Anthropol $x MED00000282
- LZP __
- $a Pubmed-20180515