• Je něco špatně v tomto záznamu ?

DNA double-strand breaks in human induced pluripotent stem cell reprogramming and long-term in vitro culturing

P. Simara, L. Tesarova, D. Rehakova, P. Matula, S. Stejskal, A. Hampl, I. Koutna,

. 2017 ; 8 (1) : 73. [pub] 20170321

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc18016711

Grantová podpora
NV16-31501A MZ0 CEP - Centrální evidence projektů

BACKGROUND: Human induced pluripotent stem cells (hiPSCs) play roles in both disease modelling and regenerative medicine. It is critical that the genomic integrity of the cells remains intact and that the DNA repair systems are fully functional. In this article, we focused on the detection of DNA double-strand breaks (DSBs) by phosphorylated histone H2AX (known as γH2AX) and p53-binding protein 1 (53BP1) in three distinct lines of hiPSCs, their source cells, and one line of human embryonic stem cells (hESCs). METHODS: We measured spontaneously occurring DSBs throughout the process of fibroblast reprogramming and during long-term in vitro culturing. To assess the variations in the functionality of the DNA repair system among the samples, the number of DSBs induced by γ-irradiation and the decrease over time was analysed. The foci number was detected by fluorescence microscopy separately for the G1 and S/G2 cell cycle phases. RESULTS: We demonstrated that fibroblasts contained a low number of non-replication-related DSBs, while this number increased after reprogramming into hiPSCs and then decreased again after long-term in vitro passaging. The artificial induction of DSBs revealed that the repair mechanisms function well in the source cells and hiPSCs at low passages, but fail to recognize a substantial proportion of DSBs at high passages. CONCLUSIONS: Our observations suggest that cellular reprogramming increases the DSB number but that the repair mechanism functions well. However, after prolonged in vitro culturing of hiPSCs, the repair capacity decreases.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18016711
003      
CZ-PrNML
005      
20180521101211.0
007      
ta
008      
180515s2017 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s13287-017-0522-5 $2 doi
035    __
$a (PubMed)28327192
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Simara, Pavel $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. p.simara@mail.muni.cz.
245    10
$a DNA double-strand breaks in human induced pluripotent stem cell reprogramming and long-term in vitro culturing / $c P. Simara, L. Tesarova, D. Rehakova, P. Matula, S. Stejskal, A. Hampl, I. Koutna,
520    9_
$a BACKGROUND: Human induced pluripotent stem cells (hiPSCs) play roles in both disease modelling and regenerative medicine. It is critical that the genomic integrity of the cells remains intact and that the DNA repair systems are fully functional. In this article, we focused on the detection of DNA double-strand breaks (DSBs) by phosphorylated histone H2AX (known as γH2AX) and p53-binding protein 1 (53BP1) in three distinct lines of hiPSCs, their source cells, and one line of human embryonic stem cells (hESCs). METHODS: We measured spontaneously occurring DSBs throughout the process of fibroblast reprogramming and during long-term in vitro culturing. To assess the variations in the functionality of the DNA repair system among the samples, the number of DSBs induced by γ-irradiation and the decrease over time was analysed. The foci number was detected by fluorescence microscopy separately for the G1 and S/G2 cell cycle phases. RESULTS: We demonstrated that fibroblasts contained a low number of non-replication-related DSBs, while this number increased after reprogramming into hiPSCs and then decreased again after long-term in vitro passaging. The artificial induction of DSBs revealed that the repair mechanisms function well in the source cells and hiPSCs at low passages, but fail to recognize a substantial proportion of DSBs at high passages. CONCLUSIONS: Our observations suggest that cellular reprogramming increases the DSB number but that the repair mechanism functions well. However, after prolonged in vitro culturing of hiPSCs, the repair capacity decreases.
650    _2
$a buněčné linie $7 D002460
650    _2
$a přeprogramování buněk $7 D065150
650    _2
$a stárnutí buněk $x genetika $x účinky záření $7 D016922
650    _2
$a DNA $x genetika $x metabolismus $7 D004247
650    12
$a dvouřetězcové zlomy DNA $x účinky záření $7 D053903
650    _2
$a oprava DNA $x genetika $7 D004260
650    _2
$a fibroblasty $x cytologie $x metabolismus $x účinky záření $7 D005347
650    _2
$a kontrolní body fáze G1 buněčného cyklu $x genetika $7 D059585
650    _2
$a kontrolní body fáze G2 buněčného cyklu $x genetika $7 D059565
650    _2
$a záření gama $7 D005720
650    _2
$a exprese genu $7 D015870
650    _2
$a histony $x genetika $x metabolismus $7 D006657
650    _2
$a lidské embryonální kmenové buňky $x cytologie $x metabolismus $x účinky záření $7 D000066449
650    _2
$a lidé $7 D006801
650    _2
$a indukované pluripotentní kmenové buňky $x cytologie $x metabolismus $x účinky záření $7 D057026
650    _2
$a fosforylace $x účinky záření $7 D010766
650    _2
$a 53BP1 $x genetika $x metabolismus $7 D000071857
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Tesarova, Lenka $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
700    1_
$a Rehakova, Daniela $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
700    1_
$a Matula, Pavel $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
700    1_
$a Stejskal, Stanislav $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
700    1_
$a Hampl, Ales $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, 625 00, Brno, Czech Republic.
700    1_
$a Koutna, Irena $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
773    0_
$w MED00188821 $t Stem cell research & therapy $x 1757-6512 $g Roč. 8, č. 1 (2017), s. 73
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28327192 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180515 $b ABA008
991    __
$a 20180521101353 $b ABA008
999    __
$a ok $b bmc $g 1300335 $s 1013551
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 8 $c 1 $d 73 $e 20170321 $i 1757-6512 $m Stem cell research & therapy $n Stem Cell Res Ther $x MED00188821
GRA    __
$a NV16-31501A $p MZ0
LZP    __
$a Pubmed-20180515

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...