-
Something wrong with this record ?
DNA double-strand breaks in human induced pluripotent stem cell reprogramming and long-term in vitro culturing
P. Simara, L. Tesarova, D. Rehakova, P. Matula, S. Stejskal, A. Hampl, I. Koutna,
Language English Country Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
NV16-31501A
MZ0
CEP Register
Digital library NLK
Full text - Article
NLK
BioMedCentral
from 2010-03-01
BioMedCentral Open Access
from 2010
Directory of Open Access Journals
from 2010
Free Medical Journals
from 2010 to 1 year ago
PubMed Central
from 2010
Europe PubMed Central
from 2010
ProQuest Central
from 2015-01-01
Open Access Digital Library
from 2010-01-01
Open Access Digital Library
from 2010-01-01
Medline Complete (EBSCOhost)
from 2010-01-01
Health & Medicine (ProQuest)
from 2015-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2010
Springer Nature OA/Free Journals
from 2010-03-01
- MeSH
- Tumor Suppressor p53-Binding Protein 1 genetics metabolism MeSH
- Cell Line MeSH
- DNA genetics metabolism MeSH
- DNA Breaks, Double-Stranded * radiation effects MeSH
- Gene Expression MeSH
- Fibroblasts cytology metabolism radiation effects MeSH
- Phosphorylation radiation effects MeSH
- Histones genetics metabolism MeSH
- Induced Pluripotent Stem Cells cytology metabolism radiation effects MeSH
- G1 Phase Cell Cycle Checkpoints genetics MeSH
- G2 Phase Cell Cycle Checkpoints genetics MeSH
- Humans MeSH
- Human Embryonic Stem Cells cytology metabolism radiation effects MeSH
- DNA Repair genetics MeSH
- Cellular Reprogramming MeSH
- Cellular Senescence genetics radiation effects MeSH
- Gamma Rays MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Human induced pluripotent stem cells (hiPSCs) play roles in both disease modelling and regenerative medicine. It is critical that the genomic integrity of the cells remains intact and that the DNA repair systems are fully functional. In this article, we focused on the detection of DNA double-strand breaks (DSBs) by phosphorylated histone H2AX (known as γH2AX) and p53-binding protein 1 (53BP1) in three distinct lines of hiPSCs, their source cells, and one line of human embryonic stem cells (hESCs). METHODS: We measured spontaneously occurring DSBs throughout the process of fibroblast reprogramming and during long-term in vitro culturing. To assess the variations in the functionality of the DNA repair system among the samples, the number of DSBs induced by γ-irradiation and the decrease over time was analysed. The foci number was detected by fluorescence microscopy separately for the G1 and S/G2 cell cycle phases. RESULTS: We demonstrated that fibroblasts contained a low number of non-replication-related DSBs, while this number increased after reprogramming into hiPSCs and then decreased again after long-term in vitro passaging. The artificial induction of DSBs revealed that the repair mechanisms function well in the source cells and hiPSCs at low passages, but fail to recognize a substantial proportion of DSBs at high passages. CONCLUSIONS: Our observations suggest that cellular reprogramming increases the DSB number but that the repair mechanism functions well. However, after prolonged in vitro culturing of hiPSCs, the repair capacity decreases.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18016711
- 003
- CZ-PrNML
- 005
- 20180521101211.0
- 007
- ta
- 008
- 180515s2017 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1186/s13287-017-0522-5 $2 doi
- 035 __
- $a (PubMed)28327192
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Simara, Pavel $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. p.simara@mail.muni.cz.
- 245 10
- $a DNA double-strand breaks in human induced pluripotent stem cell reprogramming and long-term in vitro culturing / $c P. Simara, L. Tesarova, D. Rehakova, P. Matula, S. Stejskal, A. Hampl, I. Koutna,
- 520 9_
- $a BACKGROUND: Human induced pluripotent stem cells (hiPSCs) play roles in both disease modelling and regenerative medicine. It is critical that the genomic integrity of the cells remains intact and that the DNA repair systems are fully functional. In this article, we focused on the detection of DNA double-strand breaks (DSBs) by phosphorylated histone H2AX (known as γH2AX) and p53-binding protein 1 (53BP1) in three distinct lines of hiPSCs, their source cells, and one line of human embryonic stem cells (hESCs). METHODS: We measured spontaneously occurring DSBs throughout the process of fibroblast reprogramming and during long-term in vitro culturing. To assess the variations in the functionality of the DNA repair system among the samples, the number of DSBs induced by γ-irradiation and the decrease over time was analysed. The foci number was detected by fluorescence microscopy separately for the G1 and S/G2 cell cycle phases. RESULTS: We demonstrated that fibroblasts contained a low number of non-replication-related DSBs, while this number increased after reprogramming into hiPSCs and then decreased again after long-term in vitro passaging. The artificial induction of DSBs revealed that the repair mechanisms function well in the source cells and hiPSCs at low passages, but fail to recognize a substantial proportion of DSBs at high passages. CONCLUSIONS: Our observations suggest that cellular reprogramming increases the DSB number but that the repair mechanism functions well. However, after prolonged in vitro culturing of hiPSCs, the repair capacity decreases.
- 650 _2
- $a buněčné linie $7 D002460
- 650 _2
- $a přeprogramování buněk $7 D065150
- 650 _2
- $a stárnutí buněk $x genetika $x účinky záření $7 D016922
- 650 _2
- $a DNA $x genetika $x metabolismus $7 D004247
- 650 12
- $a dvouřetězcové zlomy DNA $x účinky záření $7 D053903
- 650 _2
- $a oprava DNA $x genetika $7 D004260
- 650 _2
- $a fibroblasty $x cytologie $x metabolismus $x účinky záření $7 D005347
- 650 _2
- $a kontrolní body fáze G1 buněčného cyklu $x genetika $7 D059585
- 650 _2
- $a kontrolní body fáze G2 buněčného cyklu $x genetika $7 D059565
- 650 _2
- $a záření gama $7 D005720
- 650 _2
- $a exprese genu $7 D015870
- 650 _2
- $a histony $x genetika $x metabolismus $7 D006657
- 650 _2
- $a lidské embryonální kmenové buňky $x cytologie $x metabolismus $x účinky záření $7 D000066449
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a indukované pluripotentní kmenové buňky $x cytologie $x metabolismus $x účinky záření $7 D057026
- 650 _2
- $a fosforylace $x účinky záření $7 D010766
- 650 _2
- $a 53BP1 $x genetika $x metabolismus $7 D000071857
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Tesarova, Lenka $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- 700 1_
- $a Rehakova, Daniela $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- 700 1_
- $a Matula, Pavel $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- 700 1_
- $a Stejskal, Stanislav $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- 700 1_
- $a Hampl, Ales $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, 625 00, Brno, Czech Republic.
- 700 1_
- $a Koutna, Irena $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- 773 0_
- $w MED00188821 $t Stem cell research & therapy $x 1757-6512 $g Roč. 8, č. 1 (2017), s. 73
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28327192 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180515 $b ABA008
- 991 __
- $a 20180521101353 $b ABA008
- 999 __
- $a ok $b bmc $g 1300335 $s 1013551
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 8 $c 1 $d 73 $e 20170321 $i 1757-6512 $m Stem cell research & therapy $n Stem Cell Res Ther $x MED00188821
- GRA __
- $a NV16-31501A $p MZ0
- LZP __
- $a Pubmed-20180515