Detail
Článek
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Anaplasma phagocytophilum Infection Subverts Carbohydrate Metabolic Pathways in the Tick Vector, Ixodes scapularis

A. Cabezas-Cruz, P. Alberdi, JJ. Valdés, M. Villar, J. de la Fuente,

. 2017 ; 7 (-) : 23. [pub] 20170207

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc18016757

The obligate intracellular pathogen, Anaplasma phagocytophilum, is the causative agent of human, equine, and canine granulocytic anaplasmosis and tick-borne fever (TBF) in ruminants. A. phagocytophilum has become an emerging tick-borne pathogen in the United States, Europe, Africa, and Asia, with increasing numbers of infected people and animals every year. It has been recognized that intracellular pathogens manipulate host cell metabolic pathways to increase infection and transmission in both vertebrate and invertebrate hosts. However, our current knowledge on how A. phagocytophilum affect these processes in the tick vector, Ixodes scapularis is limited. In this study, a genome-wide search for components of major carbohydrate metabolic pathways was performed in I. scapularis ticks for which the genome was recently published. The enzymes involved in the seven major carbohydrate metabolic pathways glycolysis, gluconeogenesis, pentose phosphate, tricarboxylic acid cycle (TCA), glyceroneogenesis, and mitochondrial oxidative phosphorylation and β-oxidation were identified. Then, the available transcriptomics and proteomics data was used to characterize the mRNA and protein levels of I. scapularis major carbohydrate metabolic pathway components in response to A. phagocytophilum infection of tick tissues and cultured cells. The results showed that major carbohydrate metabolic pathways are conserved in ticks. A. phagocytophilum infection inhibits gluconeogenesis and mitochondrial metabolism, but increases the expression of glycolytic genes. A model was proposed to explain how A. phagocytophilum could simultaneously control tick cell glucose metabolism and cytoskeleton organization, which may be achieved in part by up-regulating and stabilizing hypoxia inducible factor 1 alpha in a hypoxia-independent manner. The present work provides a more comprehensive view of the major carbohydrate metabolic pathways involved in the response to A. phagocytophilum infection in ticks, and provides the basis for further studies to develop novel strategies for the control of granulocytic anaplasmosis.

000      
00000naa a2200000 a 4500
001      
bmc18016757
003      
CZ-PrNML
005      
20180523132523.0
007      
ta
008      
180515s2017 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3389/fcimb.2017.00023 $2 doi
035    __
$a (PubMed)28229048
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Cabezas-Cruz, Alejandro $u Institute of Parasitology, Biology Center, Czech Academy of SciencesCeské Budejovice, Czechia; Faculty of Science, University of South BohemiaCeské Budejovice, Czechia.
245    10
$a Anaplasma phagocytophilum Infection Subverts Carbohydrate Metabolic Pathways in the Tick Vector, Ixodes scapularis / $c A. Cabezas-Cruz, P. Alberdi, JJ. Valdés, M. Villar, J. de la Fuente,
520    9_
$a The obligate intracellular pathogen, Anaplasma phagocytophilum, is the causative agent of human, equine, and canine granulocytic anaplasmosis and tick-borne fever (TBF) in ruminants. A. phagocytophilum has become an emerging tick-borne pathogen in the United States, Europe, Africa, and Asia, with increasing numbers of infected people and animals every year. It has been recognized that intracellular pathogens manipulate host cell metabolic pathways to increase infection and transmission in both vertebrate and invertebrate hosts. However, our current knowledge on how A. phagocytophilum affect these processes in the tick vector, Ixodes scapularis is limited. In this study, a genome-wide search for components of major carbohydrate metabolic pathways was performed in I. scapularis ticks for which the genome was recently published. The enzymes involved in the seven major carbohydrate metabolic pathways glycolysis, gluconeogenesis, pentose phosphate, tricarboxylic acid cycle (TCA), glyceroneogenesis, and mitochondrial oxidative phosphorylation and β-oxidation were identified. Then, the available transcriptomics and proteomics data was used to characterize the mRNA and protein levels of I. scapularis major carbohydrate metabolic pathway components in response to A. phagocytophilum infection of tick tissues and cultured cells. The results showed that major carbohydrate metabolic pathways are conserved in ticks. A. phagocytophilum infection inhibits gluconeogenesis and mitochondrial metabolism, but increases the expression of glycolytic genes. A model was proposed to explain how A. phagocytophilum could simultaneously control tick cell glucose metabolism and cytoskeleton organization, which may be achieved in part by up-regulating and stabilizing hypoxia inducible factor 1 alpha in a hypoxia-independent manner. The present work provides a more comprehensive view of the major carbohydrate metabolic pathways involved in the response to A. phagocytophilum infection in ticks, and provides the basis for further studies to develop novel strategies for the control of granulocytic anaplasmosis.
650    _2
$a Anaplasma phagocytophilum $x patogenita $x fyziologie $7 D041081
650    _2
$a anaplasmóza $x metabolismus $7 D000712
650    _2
$a zvířata $7 D000818
650    _2
$a proteiny členovců $x chemie $x genetika $x metabolismus $7 D060829
650    _2
$a metabolismus sacharidů $x genetika $7 D050260
650    _2
$a sacharidy $7 D002241
650    _2
$a buněčné linie $7 D002460
650    _2
$a citrátový cyklus $x genetika $7 D002952
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a regulace genové exprese $x fyziologie $7 D005786
650    _2
$a glukoneogeneze $x genetika $7 D005943
650    _2
$a glykolýza $x genetika $7 D006019
650    _2
$a interakce hostitele a patogenu $x genetika $7 D054884
650    _2
$a klíště $x enzymologie $x genetika $x metabolismus $x mikrobiologie $7 D018884
650    _2
$a metabolické sítě a dráhy $x genetika $7 D053858
650    _2
$a mitochondrie $x genetika $x metabolismus $7 D008928
650    _2
$a pentózofosfátový cyklus $x genetika $7 D010427
650    _2
$a terciární struktura proteinů $7 D017434
650    _2
$a proteomika $x metody $7 D040901
650    _2
$a slinné žlázy $x mikrobiologie $7 D012469
650    _2
$a transkriptom $x genetika $7 D059467
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Alberdi, Pilar $u SaBio. Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM) Ciudad Real, Spain.
700    1_
$a Valdés, James J $u Institute of Parasitology, Biology Center, Czech Academy of SciencesCeské Budejovice, Czechia; Department of Virology, Veterinary Research InstituteBrno, Czechia.
700    1_
$a Villar, Margarita $u SaBio. Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM) Ciudad Real, Spain.
700    1_
$a de la Fuente, José $u SaBio. Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM)Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State UniversityStillwater, OK, USA.
773    0_
$w MED00182987 $t Frontiers in cellular and infection microbiology $x 2235-2988 $g Roč. 7, č. - (2017), s. 23
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28229048 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180515 $b ABA008
991    __
$a 20180523132707 $b ABA008
999    __
$a ok $b bmc $g 1300381 $s 1013597
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 7 $c - $d 23 $e 20170207 $i 2235-2988 $m Frontiers in cellular and infection microbiology $n Front Cell Infect Microbiol $x MED00182987
LZP    __
$a Pubmed-20180515

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...