-
Something wrong with this record ?
Anaplasma phagocytophilum Infection Subverts Carbohydrate Metabolic Pathways in the Tick Vector, Ixodes scapularis
A. Cabezas-Cruz, P. Alberdi, JJ. Valdés, M. Villar, J. de la Fuente,
Language English Country Switzerland
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Directory of Open Access Journals
from 2011
Free Medical Journals
from 2011
PubMed Central
from 2011
Europe PubMed Central
from 2011
Open Access Digital Library
from 2011-01-01
Open Access Digital Library
from 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2011
- MeSH
- Anaplasma phagocytophilum pathogenicity physiology MeSH
- Anaplasmosis metabolism MeSH
- Cell Line MeSH
- Citric Acid Cycle genetics MeSH
- Gluconeogenesis genetics MeSH
- Glycolysis genetics MeSH
- Host-Pathogen Interactions genetics MeSH
- Ixodes enzymology genetics metabolism microbiology MeSH
- Metabolic Networks and Pathways genetics MeSH
- Carbohydrate Metabolism genetics MeSH
- Mitochondria genetics metabolism MeSH
- Pentose Phosphate Pathway genetics MeSH
- Arthropod Proteins chemistry genetics metabolism MeSH
- Proteomics methods MeSH
- Gene Expression Regulation physiology MeSH
- Carbohydrates MeSH
- Salivary Glands microbiology MeSH
- Protein Structure, Tertiary MeSH
- Transcriptome genetics MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The obligate intracellular pathogen, Anaplasma phagocytophilum, is the causative agent of human, equine, and canine granulocytic anaplasmosis and tick-borne fever (TBF) in ruminants. A. phagocytophilum has become an emerging tick-borne pathogen in the United States, Europe, Africa, and Asia, with increasing numbers of infected people and animals every year. It has been recognized that intracellular pathogens manipulate host cell metabolic pathways to increase infection and transmission in both vertebrate and invertebrate hosts. However, our current knowledge on how A. phagocytophilum affect these processes in the tick vector, Ixodes scapularis is limited. In this study, a genome-wide search for components of major carbohydrate metabolic pathways was performed in I. scapularis ticks for which the genome was recently published. The enzymes involved in the seven major carbohydrate metabolic pathways glycolysis, gluconeogenesis, pentose phosphate, tricarboxylic acid cycle (TCA), glyceroneogenesis, and mitochondrial oxidative phosphorylation and β-oxidation were identified. Then, the available transcriptomics and proteomics data was used to characterize the mRNA and protein levels of I. scapularis major carbohydrate metabolic pathway components in response to A. phagocytophilum infection of tick tissues and cultured cells. The results showed that major carbohydrate metabolic pathways are conserved in ticks. A. phagocytophilum infection inhibits gluconeogenesis and mitochondrial metabolism, but increases the expression of glycolytic genes. A model was proposed to explain how A. phagocytophilum could simultaneously control tick cell glucose metabolism and cytoskeleton organization, which may be achieved in part by up-regulating and stabilizing hypoxia inducible factor 1 alpha in a hypoxia-independent manner. The present work provides a more comprehensive view of the major carbohydrate metabolic pathways involved in the response to A. phagocytophilum infection in ticks, and provides the basis for further studies to develop novel strategies for the control of granulocytic anaplasmosis.
Department of Virology Veterinary Research InstituteBrno Czechia
Faculty of Science University of South BohemiaCeské Budejovice Czechia
Institute of Parasitology Biology Center Czech Academy of SciencesCeské Budejovice Czechia
SaBio Instituto de Investigación en Recursos Cinegéticos Ciudad Real Spain
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18016757
- 003
- CZ-PrNML
- 005
- 20180523132523.0
- 007
- ta
- 008
- 180515s2017 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3389/fcimb.2017.00023 $2 doi
- 035 __
- $a (PubMed)28229048
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Cabezas-Cruz, Alejandro $u Institute of Parasitology, Biology Center, Czech Academy of SciencesCeské Budejovice, Czechia; Faculty of Science, University of South BohemiaCeské Budejovice, Czechia.
- 245 10
- $a Anaplasma phagocytophilum Infection Subverts Carbohydrate Metabolic Pathways in the Tick Vector, Ixodes scapularis / $c A. Cabezas-Cruz, P. Alberdi, JJ. Valdés, M. Villar, J. de la Fuente,
- 520 9_
- $a The obligate intracellular pathogen, Anaplasma phagocytophilum, is the causative agent of human, equine, and canine granulocytic anaplasmosis and tick-borne fever (TBF) in ruminants. A. phagocytophilum has become an emerging tick-borne pathogen in the United States, Europe, Africa, and Asia, with increasing numbers of infected people and animals every year. It has been recognized that intracellular pathogens manipulate host cell metabolic pathways to increase infection and transmission in both vertebrate and invertebrate hosts. However, our current knowledge on how A. phagocytophilum affect these processes in the tick vector, Ixodes scapularis is limited. In this study, a genome-wide search for components of major carbohydrate metabolic pathways was performed in I. scapularis ticks for which the genome was recently published. The enzymes involved in the seven major carbohydrate metabolic pathways glycolysis, gluconeogenesis, pentose phosphate, tricarboxylic acid cycle (TCA), glyceroneogenesis, and mitochondrial oxidative phosphorylation and β-oxidation were identified. Then, the available transcriptomics and proteomics data was used to characterize the mRNA and protein levels of I. scapularis major carbohydrate metabolic pathway components in response to A. phagocytophilum infection of tick tissues and cultured cells. The results showed that major carbohydrate metabolic pathways are conserved in ticks. A. phagocytophilum infection inhibits gluconeogenesis and mitochondrial metabolism, but increases the expression of glycolytic genes. A model was proposed to explain how A. phagocytophilum could simultaneously control tick cell glucose metabolism and cytoskeleton organization, which may be achieved in part by up-regulating and stabilizing hypoxia inducible factor 1 alpha in a hypoxia-independent manner. The present work provides a more comprehensive view of the major carbohydrate metabolic pathways involved in the response to A. phagocytophilum infection in ticks, and provides the basis for further studies to develop novel strategies for the control of granulocytic anaplasmosis.
- 650 _2
- $a Anaplasma phagocytophilum $x patogenita $x fyziologie $7 D041081
- 650 _2
- $a anaplasmóza $x metabolismus $7 D000712
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a proteiny členovců $x chemie $x genetika $x metabolismus $7 D060829
- 650 _2
- $a metabolismus sacharidů $x genetika $7 D050260
- 650 _2
- $a sacharidy $7 D002241
- 650 _2
- $a buněčné linie $7 D002460
- 650 _2
- $a citrátový cyklus $x genetika $7 D002952
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a regulace genové exprese $x fyziologie $7 D005786
- 650 _2
- $a glukoneogeneze $x genetika $7 D005943
- 650 _2
- $a glykolýza $x genetika $7 D006019
- 650 _2
- $a interakce hostitele a patogenu $x genetika $7 D054884
- 650 _2
- $a klíště $x enzymologie $x genetika $x metabolismus $x mikrobiologie $7 D018884
- 650 _2
- $a metabolické sítě a dráhy $x genetika $7 D053858
- 650 _2
- $a mitochondrie $x genetika $x metabolismus $7 D008928
- 650 _2
- $a pentózofosfátový cyklus $x genetika $7 D010427
- 650 _2
- $a terciární struktura proteinů $7 D017434
- 650 _2
- $a proteomika $x metody $7 D040901
- 650 _2
- $a slinné žlázy $x mikrobiologie $7 D012469
- 650 _2
- $a transkriptom $x genetika $7 D059467
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Alberdi, Pilar $u SaBio. Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM) Ciudad Real, Spain.
- 700 1_
- $a Valdés, James J $u Institute of Parasitology, Biology Center, Czech Academy of SciencesCeské Budejovice, Czechia; Department of Virology, Veterinary Research InstituteBrno, Czechia.
- 700 1_
- $a Villar, Margarita $u SaBio. Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM) Ciudad Real, Spain.
- 700 1_
- $a de la Fuente, José $u SaBio. Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM)Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State UniversityStillwater, OK, USA.
- 773 0_
- $w MED00182987 $t Frontiers in cellular and infection microbiology $x 2235-2988 $g Roč. 7, č. - (2017), s. 23
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28229048 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180515 $b ABA008
- 991 __
- $a 20180523132707 $b ABA008
- 999 __
- $a ok $b bmc $g 1300381 $s 1013597
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 7 $c - $d 23 $e 20170207 $i 2235-2988 $m Frontiers in cellular and infection microbiology $n Front Cell Infect Microbiol $x MED00182987
- LZP __
- $a Pubmed-20180515