-
Je něco špatně v tomto záznamu ?
System with embedded drug release and nanoparticle degradation sensor showing efficient rifampicin delivery into macrophages
J. Trousil, SK. Filippov, M. Hrubý, T. Mazel, Z. Syrová, D. Cmarko, S. Svidenská, J. Matějková, L. Kováčik, B. Porsch, R. Konefał, R. Lund, B. Nyström, I. Raška, P. Štěpánek,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- antituberkulotika aplikace a dávkování MeSH
- biokompatibilní materiály chemie MeSH
- makrofágy účinky léků metabolismus MeSH
- myši MeSH
- nanočástice chemie MeSH
- polyestery chemie MeSH
- polyethylenglykoly chemie MeSH
- RAW 264.7 buňky MeSH
- rezonanční přenos fluorescenční energie MeSH
- rifampin aplikace a dávkování MeSH
- systémy cílené aplikace léků * MeSH
- uvolňování léčiv * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We have developed a biodegradable, biocompatible system for the delivery of the antituberculotic antibiotic rifampicin with a built-in drug release and nanoparticle degradation fluorescence sensor. Polymer nanoparticles based on poly(ethylene oxide) monomethyl ether-block-poly(ε-caprolactone) were noncovalently loaded with rifampicin, a combination that, to best of our knowledge, was not previously described in the literature, which showed significant benefits. The nanoparticles contain a Förster resonance energy transfer (FRET) system that allows real-time assessment of drug release not only in vitro, but also in living macrophages where the mycobacteria typically reside as hard-to-kill intracellular parasites. The fluorophore also enables in situ monitoring of the enzymatic nanoparticle degradation in the macrophages. We show that the nanoparticles are efficiently taken up by macrophages, where they are very quickly associated with the lysosomal compartment. After drug release, the nanoparticles in the cmacrophages are enzymatically degraded, with half-life 88±11 min.
Department of Chemistry University of Oslo P O Box 1033 Blindern Oslo Norway
Institute of Macromolecular Chemistry AS CR v v i Heyrovsky sq 2 Prague Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18017054
- 003
- CZ-PrNML
- 005
- 20180518110608.0
- 007
- ta
- 008
- 180515s2017 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.nano.2016.08.031 $2 doi
- 035 __
- $a (PubMed)27613399
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Trousil, Jiří $u Institute of Macromolecular Chemistry AS CR, v. v. i., Heyrovsky sq. 2, Prague, Czech Republic.
- 245 10
- $a System with embedded drug release and nanoparticle degradation sensor showing efficient rifampicin delivery into macrophages / $c J. Trousil, SK. Filippov, M. Hrubý, T. Mazel, Z. Syrová, D. Cmarko, S. Svidenská, J. Matějková, L. Kováčik, B. Porsch, R. Konefał, R. Lund, B. Nyström, I. Raška, P. Štěpánek,
- 520 9_
- $a We have developed a biodegradable, biocompatible system for the delivery of the antituberculotic antibiotic rifampicin with a built-in drug release and nanoparticle degradation fluorescence sensor. Polymer nanoparticles based on poly(ethylene oxide) monomethyl ether-block-poly(ε-caprolactone) were noncovalently loaded with rifampicin, a combination that, to best of our knowledge, was not previously described in the literature, which showed significant benefits. The nanoparticles contain a Förster resonance energy transfer (FRET) system that allows real-time assessment of drug release not only in vitro, but also in living macrophages where the mycobacteria typically reside as hard-to-kill intracellular parasites. The fluorophore also enables in situ monitoring of the enzymatic nanoparticle degradation in the macrophages. We show that the nanoparticles are efficiently taken up by macrophages, where they are very quickly associated with the lysosomal compartment. After drug release, the nanoparticles in the cmacrophages are enzymatically degraded, with half-life 88±11 min.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a antituberkulotika $x aplikace a dávkování $7 D000995
- 650 _2
- $a biokompatibilní materiály $x chemie $7 D001672
- 650 12
- $a systémy cílené aplikace léků $7 D016503
- 650 12
- $a uvolňování léčiv $7 D065546
- 650 _2
- $a rezonanční přenos fluorescenční energie $7 D031541
- 650 _2
- $a makrofágy $x účinky léků $x metabolismus $7 D008264
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a nanočástice $x chemie $7 D053758
- 650 _2
- $a polyestery $x chemie $7 D011091
- 650 _2
- $a polyethylenglykoly $x chemie $7 D011092
- 650 _2
- $a RAW 264.7 buňky $7 D000067996
- 650 _2
- $a rifampin $x aplikace a dávkování $7 D012293
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Filippov, Sergey K $u Institute of Macromolecular Chemistry AS CR, v. v. i., Heyrovsky sq. 2, Prague, Czech Republic.
- 700 1_
- $a Hrubý, Martin $u Institute of Macromolecular Chemistry AS CR, v. v. i., Heyrovsky sq. 2, Prague, Czech Republic. Electronic address: mhruby@centrum.cz.
- 700 1_
- $a Mazel, Tomáš $u Institute of Cellular Biology and Pathology, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic.
- 700 1_
- $a Syrová, Zdeňka $u Institute of Cellular Biology and Pathology, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic.
- 700 1_
- $a Cmarko, Dušan $u Institute of Cellular Biology and Pathology, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic.
- 700 1_
- $a Svidenská, Silvie $u Institute of Cellular Biology and Pathology, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic.
- 700 1_
- $a Matějková, Jana $u Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic.
- 700 1_
- $a Kováčik, Lubomír $u Institute of Cellular Biology and Pathology, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic.
- 700 1_
- $a Porsch, Bedřich $u Institute of Macromolecular Chemistry AS CR, v. v. i., Heyrovsky sq. 2, Prague, Czech Republic.
- 700 1_
- $a Konefał, Rafał $u Institute of Macromolecular Chemistry AS CR, v. v. i., Heyrovsky sq. 2, Prague, Czech Republic.
- 700 1_
- $a Lund, Reidar $u Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, Oslo, Norway.
- 700 1_
- $a Nyström, Bo $u Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, Oslo, Norway.
- 700 1_
- $a Raška, Ivan $u Institute of Cellular Biology and Pathology, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic.
- 700 1_
- $a Štěpánek, Petr $u Institute of Macromolecular Chemistry AS CR, v. v. i., Heyrovsky sq. 2, Prague, Czech Republic.
- 773 0_
- $w MED00167284 $t Nanomedicine nanotechnology, biology, and medicine $x 1549-9642 $g Roč. 13, č. 1 (2017), s. 307-315
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27613399 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180515 $b ABA008
- 991 __
- $a 20180518110746 $b ABA008
- 999 __
- $a ok $b bmc $g 1300678 $s 1013894
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 13 $c 1 $d 307-315 $e 20160906 $i 1549-9642 $m Nanomedicine $n Nanomedicine $x MED00167284
- LZP __
- $a Pubmed-20180515