• Je něco špatně v tomto záznamu ?

What can be found in scalp EEG spectrum beyond common frequency bands. EEG-fMRI study

R. Marecek, M. Lamos, M. Mikl, M. Barton, J. Fajkus, . Rektor, M. Brazdil,

. 2016 ; 13 (4) : 046026. [pub] 20160719

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc18017152

OBJECTIVE: The scalp EEG spectrum is a frequently used marker of neural activity. Commonly, the preprocessing of EEG utilizes constraints, e.g. dealing with a predefined subset of electrodes or a predefined frequency band of interest. Such treatment of the EEG spectrum neglects the fact that particular neural processes may be reflected in several frequency bands and/or several electrodes concurrently, and can overlook the complexity of the structure of the EEG spectrum. APPROACH: We showed that the EEG spectrum structure can be described by parallel factor analysis (PARAFAC), a method which blindly uncovers the spatial-temporal-spectral patterns of EEG. We used an algorithm based on variational Bayesian statistics to reveal nine patterns from the EEG of 38 healthy subjects, acquired during a semantic decision task. The patterns reflected neural activity synchronized across theta, alpha, beta and gamma bands and spread over many electrodes, as well as various EEG artifacts. MAIN RESULTS: Specifically, one of the patterns showed significant correlation with the stimuli timing. The correlation was higher when compared to commonly used models of neural activity (power fluctuations in distinct frequency band averaged across a subset of electrodes) and we found significantly correlated hemodynamic fluctuations in simultaneously acquired fMRI data in regions known to be involved in speech processing. Further, we show that the pattern also occurs in EEG data which were acquired outside the MR machine. Two other patterns reflected brain rhythms linked to the attentional and basal ganglia large scale networks. The other patterns were related to various EEG artifacts. SIGNIFICANCE: These results show that PARAFAC blindly identifies neural activity in the EEG spectrum and that it naturally handles the correlations among frequency bands and electrodes. We conclude that PARAFAC seems to be a powerful tool for analysis of the EEG spectrum and might bring novel insight to the relationships between EEG activity and brain hemodynamics.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18017152
003      
CZ-PrNML
005      
20180521093232.0
007      
ta
008      
180515s2016 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1088/1741-2560/13/4/046026 $2 doi
035    __
$a (PubMed)27432759
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Marecek, R $u CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
245    10
$a What can be found in scalp EEG spectrum beyond common frequency bands. EEG-fMRI study / $c R. Marecek, M. Lamos, M. Mikl, M. Barton, J. Fajkus, . Rektor, M. Brazdil,
520    9_
$a OBJECTIVE: The scalp EEG spectrum is a frequently used marker of neural activity. Commonly, the preprocessing of EEG utilizes constraints, e.g. dealing with a predefined subset of electrodes or a predefined frequency band of interest. Such treatment of the EEG spectrum neglects the fact that particular neural processes may be reflected in several frequency bands and/or several electrodes concurrently, and can overlook the complexity of the structure of the EEG spectrum. APPROACH: We showed that the EEG spectrum structure can be described by parallel factor analysis (PARAFAC), a method which blindly uncovers the spatial-temporal-spectral patterns of EEG. We used an algorithm based on variational Bayesian statistics to reveal nine patterns from the EEG of 38 healthy subjects, acquired during a semantic decision task. The patterns reflected neural activity synchronized across theta, alpha, beta and gamma bands and spread over many electrodes, as well as various EEG artifacts. MAIN RESULTS: Specifically, one of the patterns showed significant correlation with the stimuli timing. The correlation was higher when compared to commonly used models of neural activity (power fluctuations in distinct frequency band averaged across a subset of electrodes) and we found significantly correlated hemodynamic fluctuations in simultaneously acquired fMRI data in regions known to be involved in speech processing. Further, we show that the pattern also occurs in EEG data which were acquired outside the MR machine. Two other patterns reflected brain rhythms linked to the attentional and basal ganglia large scale networks. The other patterns were related to various EEG artifacts. SIGNIFICANCE: These results show that PARAFAC blindly identifies neural activity in the EEG spectrum and that it naturally handles the correlations among frequency bands and electrodes. We conclude that PARAFAC seems to be a powerful tool for analysis of the EEG spectrum and might bring novel insight to the relationships between EEG activity and brain hemodynamics.
650    _2
$a dospělí $7 D000328
650    _2
$a algoritmy $7 D000465
650    _2
$a artefakty $7 D016477
650    _2
$a Bayesova věta $7 D001499
650    _2
$a mozkový krevní oběh $x fyziologie $7 D002560
650    _2
$a elektroencefalografie $x statistika a číselné údaje $7 D004569
650    _2
$a faktorová analýza statistická $7 D005163
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a hemodynamika $x fyziologie $7 D006439
650    _2
$a lidé $7 D006801
650    _2
$a magnetická rezonanční tomografie $x statistika a číselné údaje $7 D008279
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a multimodální zobrazování $7 D064847
650    _2
$a nervová síť $x fyziologie $7 D009415
650    _2
$a kyslík $x krev $7 D010100
650    _2
$a psychomotorický výkon $x fyziologie $7 D011597
650    _2
$a skalp $7 D012535
650    _2
$a mladý dospělý $7 D055815
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Lamos, M
700    1_
$a Mikl, M
700    1_
$a Barton, M
700    1_
$a Fajkus, J
700    1_
$a Rektor,
700    1_
$a Brazdil, M
773    0_
$w MED00188777 $t Journal of neural engineering $x 1741-2552 $g Roč. 13, č. 4 (2016), s. 046026
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27432759 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180515 $b ABA008
991    __
$a 20180521093414 $b ABA008
999    __
$a ok $b bmc $g 1300776 $s 1013992
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 13 $c 4 $d 046026 $e 20160719 $i 1741-2552 $m Journal of neural engineering $n J Neural Eng $x MED00188777
LZP    __
$a Pubmed-20180515

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...