Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Nrf2-Mediated Antioxidant Defense and Peroxiredoxin 6 Are Linked to Biosynthesis of Palmitic Acid Ester of 9-Hydroxystearic Acid

O. Kuda, M. Brezinova, J. Silhavy, V. Landa, V. Zidek, C. Dodia, F. Kreuchwig, M. Vrbacky, L. Balas, T. Durand, N. Hübner, AB. Fisher, J. Kopecky, M. Pravenec,

. 2018 ; 67 (6) : 1190-1199. [pub] 20180316

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc18024299

Fatty acid esters of hydroxy fatty acids (FAHFAs) are lipid mediators with promising antidiabetic and anti-inflammatory properties that are formed in white adipose tissue (WAT) via de novo lipogenesis, but their biosynthetic enzymes are unknown. Using a combination of lipidomics in WAT, quantitative trait locus mapping, and correlation analyses in rat BXH/HXB recombinant inbred strains, as well as response to oxidative stress in murine models, we elucidated the potential pathway of biosynthesis of several FAHFAs. Comprehensive analysis of WAT samples identified ∼160 regioisomers, documenting the complexity of this lipid class. The linkage analysis highlighted several members of the nuclear factor, erythroid 2 like 2 (Nrf2)-mediated antioxidant defense system (Prdx6, Mgst1, Mgst3), lipid-handling proteins (Cd36, Scd6, Acnat1, Acnat2, Baat), and the family of flavin containing monooxygenases (Fmo) as the positional candidate genes. Transgenic expression of Nrf2 and deletion of Prdx6 genes resulted in reduction of palmitic acid ester of 9-hydroxystearic acid (9-PAHSA) and 11-PAHSA levels, while oxidative stress induced by an inhibitor of glutathione synthesis increased PAHSA levels nonspecifically. Our results indicate that the synthesis of FAHFAs via carbohydrate-responsive element-binding protein-driven de novo lipogenesis depends on the adaptive antioxidant system and suggest that FAHFAs may link activity of this system with insulin sensitivity in peripheral tissues.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18024299
003      
CZ-PrNML
005      
20180713103613.0
007      
ta
008      
180709s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.2337/db17-1087 $2 doi
035    __
$a (PubMed)29549163
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Kuda, Ondrej $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic ondrej.kuda@fgu.cas.cz.
245    10
$a Nrf2-Mediated Antioxidant Defense and Peroxiredoxin 6 Are Linked to Biosynthesis of Palmitic Acid Ester of 9-Hydroxystearic Acid / $c O. Kuda, M. Brezinova, J. Silhavy, V. Landa, V. Zidek, C. Dodia, F. Kreuchwig, M. Vrbacky, L. Balas, T. Durand, N. Hübner, AB. Fisher, J. Kopecky, M. Pravenec,
520    9_
$a Fatty acid esters of hydroxy fatty acids (FAHFAs) are lipid mediators with promising antidiabetic and anti-inflammatory properties that are formed in white adipose tissue (WAT) via de novo lipogenesis, but their biosynthetic enzymes are unknown. Using a combination of lipidomics in WAT, quantitative trait locus mapping, and correlation analyses in rat BXH/HXB recombinant inbred strains, as well as response to oxidative stress in murine models, we elucidated the potential pathway of biosynthesis of several FAHFAs. Comprehensive analysis of WAT samples identified ∼160 regioisomers, documenting the complexity of this lipid class. The linkage analysis highlighted several members of the nuclear factor, erythroid 2 like 2 (Nrf2)-mediated antioxidant defense system (Prdx6, Mgst1, Mgst3), lipid-handling proteins (Cd36, Scd6, Acnat1, Acnat2, Baat), and the family of flavin containing monooxygenases (Fmo) as the positional candidate genes. Transgenic expression of Nrf2 and deletion of Prdx6 genes resulted in reduction of palmitic acid ester of 9-hydroxystearic acid (9-PAHSA) and 11-PAHSA levels, while oxidative stress induced by an inhibitor of glutathione synthesis increased PAHSA levels nonspecifically. Our results indicate that the synthesis of FAHFAs via carbohydrate-responsive element-binding protein-driven de novo lipogenesis depends on the adaptive antioxidant system and suggest that FAHFAs may link activity of this system with insulin sensitivity in peripheral tissues.
650    _2
$a bílá tuková tkáň $x enzymologie $x metabolismus $7 D052436
650    _2
$a zvířata $7 D000818
650    _2
$a biologické markery $x metabolismus $7 D015415
650    _2
$a estery $x chemie $x metabolismus $7 D004952
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a stanovení celkové genové exprese $7 D020869
650    12
$a regulace genové exprese enzymů $7 D015971
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a metabolomika $x metody $7 D055432
650    _2
$a myši inbrední C57BL $7 D008810
650    _2
$a myši knockoutované $7 D018345
650    _2
$a faktor 2 související s NF-E2 $x genetika $x metabolismus $7 D051267
650    12
$a oxidační stres $7 D018384
650    _2
$a kyselina palmitová $x chemie $x metabolismus $7 D019308
650    _2
$a peroxiredoxin VI $x genetika $x metabolismus $7 D054465
650    _2
$a náhodné rozdělení $7 D011897
650    _2
$a krysa rodu Rattus $7 D051381
650    _2
$a potkani inbrední BN $7 D011914
650    _2
$a potkani inbrední SHR $7 D011918
650    _2
$a potkani transgenní $7 D055647
650    _2
$a kyseliny stearové $x chemie $x metabolismus $7 D013229
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Brezinova, Marie $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Silhavy, Jan $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Landa, Vladimir $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Zidek, Vaclav $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Dodia, Chandra $u Institute for Environmental Medicine and Department of Physiology, University of Pennsylvania, Philadelphia, PA.
700    1_
$a Kreuchwig, Franziska $u Max Delbrück Center for Molecular Medicine, German Centre for Cardiovascular Research, and Charité - Universitätsmedizin, Berlin, Germany.
700    1_
$a Vrbacky, Marek $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Balas, Laurence $u Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, Montpellier, France.
700    1_
$a Durand, Thierry $u Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, Montpellier, France.
700    1_
$a Hübner, Norbert $u Max Delbrück Center for Molecular Medicine, German Centre for Cardiovascular Research, and Charité - Universitätsmedizin, Berlin, Germany.
700    1_
$a Fisher, Aron B $u Institute for Environmental Medicine and Department of Physiology, University of Pennsylvania, Philadelphia, PA.
700    1_
$a Kopecky, Jan $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Pravenec, Michal $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
773    0_
$w MED00001379 $t Diabetes $x 1939-327X $g Roč. 67, č. 6 (2018), s. 1190-1199
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29549163 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180709 $b ABA008
991    __
$a 20180713103907 $b ABA008
999    __
$a ok $b bmc $g 1316430 $s 1021220
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 67 $c 6 $d 1190-1199 $e 20180316 $i 1939-327X $m Diabetes $n Diabetes $x MED00001379
LZP    __
$a Pubmed-20180709

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...