• Je něco špatně v tomto záznamu ?

Effect of carbon limitation on photosynthetic electron transport in Nannochloropsis oculata

T. Zavřel, M. Szabó, B. Tamburic, C. Evenhuis, U. Kuzhiumparambil, P. Literáková, AWD. Larkum, JA. Raven, J. Červený, PJ. Ralph,

. 2018 ; 181 (-) : 31-43. [pub] 20180221

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18024337

This study describes the impacts of inorganic carbon limitation on the photosynthetic efficiency and operation of photosynthetic electron transport pathways in the biofuel-candidate microalga Nannochloropsis oculata. Using a combination of highly-controlled cultivation setup (photobioreactor), variable chlorophyll a fluorescence and transient spectroscopy methods (electrochromic shift (ECS) and P700 redox kinetics), we showed that net photosynthesis and effective quantum yield of Photosystem II (PSII) decreased in N. oculata under carbon limitation. This was accompanied by a transient increase in total proton motive force and energy-dependent non-photochemical quenching as well as slightly elevated respiration. On the other hand, under carbon limitation the rapid increase in proton motive force (PMF, estimated from the total ECS signal) was also accompanied by reduced conductivity of ATP synthase to protons (estimated from the rate of ECS decay in dark after actinic illumination). This indicates that the slow operation of ATP synthase results in the transient build-up of PMF, which leads to the activation of fast energy dissipation mechanisms such as energy-dependent non-photochemical quenching. N. oculata also increased content of lipids under carbon limitation, which compensated for reduced NAPDH consumption during decreased CO2 fixation. The integrated knowledge of the underlying energetic regulation of photosynthetic processes attained with a combination of biophysical methods may be used to identify photo-physiological signatures of the onset of carbon limitation in microalgal cultivation systems, as well as to potentially identify microalgal strains that can better acclimate to carbon limitation.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18024337
003      
CZ-PrNML
005      
20180717083808.0
007      
ta
008      
180709s2018 sz f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jphotobiol.2018.02.020 $2 doi
035    __
$a (PubMed)29486460
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Zavřel, Tomáš $u Global Change Research Institute CAS, Bělidla 986/4a, 603 00 Brno, Czech Republic. Electronic address: zavrel.t@czechglobe.cz.
245    10
$a Effect of carbon limitation on photosynthetic electron transport in Nannochloropsis oculata / $c T. Zavřel, M. Szabó, B. Tamburic, C. Evenhuis, U. Kuzhiumparambil, P. Literáková, AWD. Larkum, JA. Raven, J. Červený, PJ. Ralph,
520    9_
$a This study describes the impacts of inorganic carbon limitation on the photosynthetic efficiency and operation of photosynthetic electron transport pathways in the biofuel-candidate microalga Nannochloropsis oculata. Using a combination of highly-controlled cultivation setup (photobioreactor), variable chlorophyll a fluorescence and transient spectroscopy methods (electrochromic shift (ECS) and P700 redox kinetics), we showed that net photosynthesis and effective quantum yield of Photosystem II (PSII) decreased in N. oculata under carbon limitation. This was accompanied by a transient increase in total proton motive force and energy-dependent non-photochemical quenching as well as slightly elevated respiration. On the other hand, under carbon limitation the rapid increase in proton motive force (PMF, estimated from the total ECS signal) was also accompanied by reduced conductivity of ATP synthase to protons (estimated from the rate of ECS decay in dark after actinic illumination). This indicates that the slow operation of ATP synthase results in the transient build-up of PMF, which leads to the activation of fast energy dissipation mechanisms such as energy-dependent non-photochemical quenching. N. oculata also increased content of lipids under carbon limitation, which compensated for reduced NAPDH consumption during decreased CO2 fixation. The integrated knowledge of the underlying energetic regulation of photosynthetic processes attained with a combination of biophysical methods may be used to identify photo-physiological signatures of the onset of carbon limitation in microalgal cultivation systems, as well as to potentially identify microalgal strains that can better acclimate to carbon limitation.
650    _2
$a adenosintrifosfát $x metabolismus $7 D000255
650    _2
$a uhlík $x chemie $x metabolismus $7 D002244
650    _2
$a oxid uhličitý $x chemie $x metabolismus $7 D002245
650    _2
$a transport elektronů $x účinky záření $7 D004579
650    _2
$a mastné kyseliny $x chemie $x metabolismus $7 D005227
650    _2
$a světlo $7 D008027
650    _2
$a mikrořasy $x metabolismus $x účinky záření $7 D058086
650    _2
$a fotosyntéza $x účinky záření $7 D010788
650    _2
$a fotosystém II - proteinový komplex $x chemie $x metabolismus $7 D045332
650    _2
$a protony $7 D011522
650    _2
$a tylakoidy $x chemie $x metabolismus $7 D020524
655    _2
$a časopisecké články $7 D016428
700    1_
$a Szabó, Milán $u Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW 2007, Australia; Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, H-6726 Szeged, Hungary. Electronic address: Milan.Szabo@uts.edu.au.
700    1_
$a Tamburic, Bojan $u Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW 2007, Australia.
700    1_
$a Evenhuis, Christian $u Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW 2007, Australia.
700    1_
$a Kuzhiumparambil, Unnikrishnan $u Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW 2007, Australia.
700    1_
$a Literáková, Petra $u Global Change Research Institute CAS, Bělidla 986/4a, 603 00 Brno, Czech Republic.
700    1_
$a Larkum, Anthony W D $u Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW 2007, Australia.
700    1_
$a Raven, John A $u Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW 2007, Australia; Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
700    1_
$a Červený, Jan $u Global Change Research Institute CAS, Bělidla 986/4a, 603 00 Brno, Czech Republic.
700    1_
$a Ralph, Peter J $u Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW 2007, Australia.
773    0_
$w MED00006656 $t Journal of photochemistry and photobiology. B, Biology $x 1873-2682 $g Roč. 181, č. - (2018), s. 31-43
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29486460 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180709 $b ABA008
991    __
$a 20180717084107 $b ABA008
999    __
$a ok $b bmc $g 1316468 $s 1021258
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 181 $c - $d 31-43 $e 20180221 $i 1873-2682 $m Journal of photochemistry and photobiology. B, Biology $n J Photochem Photobiol B $x MED00006656
LZP    __
$a Pubmed-20180709

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...