-
Je něco špatně v tomto záznamu ?
Effect of carbon limitation on photosynthetic electron transport in Nannochloropsis oculata
T. Zavřel, M. Szabó, B. Tamburic, C. Evenhuis, U. Kuzhiumparambil, P. Literáková, AWD. Larkum, JA. Raven, J. Červený, PJ. Ralph,
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články
- MeSH
- adenosintrifosfát metabolismus MeSH
- fotosyntéza účinky záření MeSH
- fotosystém II - proteinový komplex chemie metabolismus MeSH
- mastné kyseliny chemie metabolismus MeSH
- mikrořasy metabolismus účinky záření MeSH
- oxid uhličitý chemie metabolismus MeSH
- protony MeSH
- světlo MeSH
- transport elektronů účinky záření MeSH
- tylakoidy chemie metabolismus MeSH
- uhlík chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
This study describes the impacts of inorganic carbon limitation on the photosynthetic efficiency and operation of photosynthetic electron transport pathways in the biofuel-candidate microalga Nannochloropsis oculata. Using a combination of highly-controlled cultivation setup (photobioreactor), variable chlorophyll a fluorescence and transient spectroscopy methods (electrochromic shift (ECS) and P700 redox kinetics), we showed that net photosynthesis and effective quantum yield of Photosystem II (PSII) decreased in N. oculata under carbon limitation. This was accompanied by a transient increase in total proton motive force and energy-dependent non-photochemical quenching as well as slightly elevated respiration. On the other hand, under carbon limitation the rapid increase in proton motive force (PMF, estimated from the total ECS signal) was also accompanied by reduced conductivity of ATP synthase to protons (estimated from the rate of ECS decay in dark after actinic illumination). This indicates that the slow operation of ATP synthase results in the transient build-up of PMF, which leads to the activation of fast energy dissipation mechanisms such as energy-dependent non-photochemical quenching. N. oculata also increased content of lipids under carbon limitation, which compensated for reduced NAPDH consumption during decreased CO2 fixation. The integrated knowledge of the underlying energetic regulation of photosynthetic processes attained with a combination of biophysical methods may be used to identify photo-physiological signatures of the onset of carbon limitation in microalgal cultivation systems, as well as to potentially identify microalgal strains that can better acclimate to carbon limitation.
Climate Change Cluster University of Technology Sydney Ultimo NSW 2007 Australia
Global Change Research Institute CAS Bělidla 986 4a 603 00 Brno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18024337
- 003
- CZ-PrNML
- 005
- 20180717083808.0
- 007
- ta
- 008
- 180709s2018 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.jphotobiol.2018.02.020 $2 doi
- 035 __
- $a (PubMed)29486460
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Zavřel, Tomáš $u Global Change Research Institute CAS, Bělidla 986/4a, 603 00 Brno, Czech Republic. Electronic address: zavrel.t@czechglobe.cz.
- 245 10
- $a Effect of carbon limitation on photosynthetic electron transport in Nannochloropsis oculata / $c T. Zavřel, M. Szabó, B. Tamburic, C. Evenhuis, U. Kuzhiumparambil, P. Literáková, AWD. Larkum, JA. Raven, J. Červený, PJ. Ralph,
- 520 9_
- $a This study describes the impacts of inorganic carbon limitation on the photosynthetic efficiency and operation of photosynthetic electron transport pathways in the biofuel-candidate microalga Nannochloropsis oculata. Using a combination of highly-controlled cultivation setup (photobioreactor), variable chlorophyll a fluorescence and transient spectroscopy methods (electrochromic shift (ECS) and P700 redox kinetics), we showed that net photosynthesis and effective quantum yield of Photosystem II (PSII) decreased in N. oculata under carbon limitation. This was accompanied by a transient increase in total proton motive force and energy-dependent non-photochemical quenching as well as slightly elevated respiration. On the other hand, under carbon limitation the rapid increase in proton motive force (PMF, estimated from the total ECS signal) was also accompanied by reduced conductivity of ATP synthase to protons (estimated from the rate of ECS decay in dark after actinic illumination). This indicates that the slow operation of ATP synthase results in the transient build-up of PMF, which leads to the activation of fast energy dissipation mechanisms such as energy-dependent non-photochemical quenching. N. oculata also increased content of lipids under carbon limitation, which compensated for reduced NAPDH consumption during decreased CO2 fixation. The integrated knowledge of the underlying energetic regulation of photosynthetic processes attained with a combination of biophysical methods may be used to identify photo-physiological signatures of the onset of carbon limitation in microalgal cultivation systems, as well as to potentially identify microalgal strains that can better acclimate to carbon limitation.
- 650 _2
- $a adenosintrifosfát $x metabolismus $7 D000255
- 650 _2
- $a uhlík $x chemie $x metabolismus $7 D002244
- 650 _2
- $a oxid uhličitý $x chemie $x metabolismus $7 D002245
- 650 _2
- $a transport elektronů $x účinky záření $7 D004579
- 650 _2
- $a mastné kyseliny $x chemie $x metabolismus $7 D005227
- 650 _2
- $a světlo $7 D008027
- 650 _2
- $a mikrořasy $x metabolismus $x účinky záření $7 D058086
- 650 _2
- $a fotosyntéza $x účinky záření $7 D010788
- 650 _2
- $a fotosystém II - proteinový komplex $x chemie $x metabolismus $7 D045332
- 650 _2
- $a protony $7 D011522
- 650 _2
- $a tylakoidy $x chemie $x metabolismus $7 D020524
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Szabó, Milán $u Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW 2007, Australia; Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, H-6726 Szeged, Hungary. Electronic address: Milan.Szabo@uts.edu.au.
- 700 1_
- $a Tamburic, Bojan $u Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW 2007, Australia.
- 700 1_
- $a Evenhuis, Christian $u Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW 2007, Australia.
- 700 1_
- $a Kuzhiumparambil, Unnikrishnan $u Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW 2007, Australia.
- 700 1_
- $a Literáková, Petra $u Global Change Research Institute CAS, Bělidla 986/4a, 603 00 Brno, Czech Republic.
- 700 1_
- $a Larkum, Anthony W D $u Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW 2007, Australia.
- 700 1_
- $a Raven, John A $u Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW 2007, Australia; Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
- 700 1_
- $a Červený, Jan $u Global Change Research Institute CAS, Bělidla 986/4a, 603 00 Brno, Czech Republic.
- 700 1_
- $a Ralph, Peter J $u Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW 2007, Australia.
- 773 0_
- $w MED00006656 $t Journal of photochemistry and photobiology. B, Biology $x 1873-2682 $g Roč. 181, č. - (2018), s. 31-43
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29486460 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180709 $b ABA008
- 991 __
- $a 20180717084107 $b ABA008
- 999 __
- $a ok $b bmc $g 1316468 $s 1021258
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 181 $c - $d 31-43 $e 20180221 $i 1873-2682 $m Journal of photochemistry and photobiology. B, Biology $n J Photochem Photobiol B $x MED00006656
- LZP __
- $a Pubmed-20180709