-
Something wrong with this record ?
How proteases from Enterococcus faecalis contribute to its resistance to short α-helical antimicrobial peptides
O. Nešuta, M. Budešínský, R. Hadravová, L. Monincová, J. Humpolicková, V. Cerovský,
Language English Country United States
Document type Journal Article
Grant support
NV16-27726A
MZ0
CEP Register
Digital library NLK
Full text - Article
NLK
PubMed Central
from 2014
ProQuest Central
from 2015-01-01 to 1 year ago
Open Access Digital Library
from 1996-01-01
Health & Medicine (ProQuest)
from 2015-01-01 to 1 year ago
Public Health Database (ProQuest)
from 2015-01-01 to 1 year ago
Oxford Journals Open Access Collection
from 2013-02-01
PubMed
28830077
DOI
10.1093/femspd/ftx091
Knihovny.cz E-resources
- MeSH
- Anti-Bacterial Agents chemical synthesis metabolism pharmacology MeSH
- Bacterial Proteins antagonists & inhibitors chemistry metabolism MeSH
- Biofilms drug effects growth & development MeSH
- Enterococcus faecalis drug effects enzymology growth & development ultrastructure MeSH
- Phenanthrolines pharmacology MeSH
- Enzyme Inhibitors pharmacology MeSH
- Antimicrobial Cationic Peptides chemical synthesis metabolism pharmacology MeSH
- Microbial Sensitivity Tests MeSH
- Plankton drug effects enzymology growth & development ultrastructure MeSH
- Proteolysis MeSH
- Amino Acid Sequence MeSH
- Serine Endopeptidases chemistry metabolism MeSH
- Amino Acid Substitution MeSH
- Bees chemistry physiology MeSH
- Structure-Activity Relationship MeSH
- Gelatinases antagonists & inhibitors chemistry metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
HYL-20 (GILSSLWKKLKKIIAK-NH2) is an analogue of a natural antimicrobial peptide (AMP) previously isolated from the venom of wild bee. We examined its antimicrobial activity against three strains of Enterococcus faecalis while focusing on its susceptibility to proteolytic degradation by two known proteases-gelatinase (GelE) and serine protease (SprE)-which are secreted by these bacterial strains. We found that HYL-20 was primarily deamidated at its C-terminal which made the peptide susceptible to consecutive intramolecular cleavage by GelE. Further study utilising 1,10-phenanthroline, a specific GelE inhibitor and analogous peptide with D-Lys at its C-terminus (HYL-20k) revealed that the C-terminal deamidation of HYL-20 is attributed to not yet unidentified protease which also cleaves internal peptide bonds of AMPs. In contrast to published data, participation of SprE in the protective mechanism of E. faecalis against AMPs was not proved. The resistance of HYL-20k to C-terminal deamidation and subsequent intramolecular cleavage has resulted in increased antimicrobial activity against E. faecalis grown in planktonic and biofilm form when compared to HYL-20.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18024718
- 003
- CZ-PrNML
- 005
- 20180718114446.0
- 007
- ta
- 008
- 180709s2017 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/femspd/ftx091 $2 doi
- 035 __
- $a (PubMed)28830077
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Nešuta, Ondrej $u Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic. Faculty of Food and Biochemical Technology, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
- 245 10
- $a How proteases from Enterococcus faecalis contribute to its resistance to short α-helical antimicrobial peptides / $c O. Nešuta, M. Budešínský, R. Hadravová, L. Monincová, J. Humpolicková, V. Cerovský,
- 520 9_
- $a HYL-20 (GILSSLWKKLKKIIAK-NH2) is an analogue of a natural antimicrobial peptide (AMP) previously isolated from the venom of wild bee. We examined its antimicrobial activity against three strains of Enterococcus faecalis while focusing on its susceptibility to proteolytic degradation by two known proteases-gelatinase (GelE) and serine protease (SprE)-which are secreted by these bacterial strains. We found that HYL-20 was primarily deamidated at its C-terminal which made the peptide susceptible to consecutive intramolecular cleavage by GelE. Further study utilising 1,10-phenanthroline, a specific GelE inhibitor and analogous peptide with D-Lys at its C-terminus (HYL-20k) revealed that the C-terminal deamidation of HYL-20 is attributed to not yet unidentified protease which also cleaves internal peptide bonds of AMPs. In contrast to published data, participation of SprE in the protective mechanism of E. faecalis against AMPs was not proved. The resistance of HYL-20k to C-terminal deamidation and subsequent intramolecular cleavage has resulted in increased antimicrobial activity against E. faecalis grown in planktonic and biofilm form when compared to HYL-20.
- 650 _2
- $a sekvence aminokyselin $7 D000595
- 650 _2
- $a substituce aminokyselin $7 D019943
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a antibakteriální látky $x chemická syntéza $x metabolismus $x farmakologie $7 D000900
- 650 _2
- $a kationické antimikrobiální peptidy $x chemická syntéza $x metabolismus $x farmakologie $7 D023181
- 650 _2
- $a bakteriální proteiny $x antagonisté a inhibitory $x chemie $x metabolismus $7 D001426
- 650 _2
- $a včely $x chemie $x fyziologie $7 D001516
- 650 _2
- $a biofilmy $x účinky léků $x růst a vývoj $7 D018441
- 650 _2
- $a Enterococcus faecalis $x účinky léků $x enzymologie $x růst a vývoj $x ultrastruktura $7 D013293
- 650 _2
- $a inhibitory enzymů $x farmakologie $7 D004791
- 650 _2
- $a želatinasy $x antagonisté a inhibitory $x chemie $x metabolismus $7 D018093
- 650 _2
- $a mikrobiální testy citlivosti $7 D008826
- 650 _2
- $a fenantroliny $x farmakologie $7 D010618
- 650 _2
- $a plankton $x účinky léků $x enzymologie $x růst a vývoj $x ultrastruktura $7 D010933
- 650 _2
- $a proteolýza $7 D059748
- 650 _2
- $a serinové endopeptidasy $x chemie $x metabolismus $7 D012697
- 650 _2
- $a vztahy mezi strukturou a aktivitou $7 D013329
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Budešínský, Miloš $u Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo námestí 2, 166 10 Prague 6, Czech Republic.
- 700 1_
- $a Hadravová, Romana $u Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo námestí 2, 166 10 Prague 6, Czech Republic.
- 700 1_
- $a Monincová, Lenka $u Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo námestí 2, 166 10 Prague 6, Czech Republic.
- 700 1_
- $a Humpolicková, Jana $u Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo námestí 2, 166 10 Prague 6, Czech Republic.
- 700 1_
- $a Cerovský, Václav $u Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo námestí 2, 166 10 Prague 6, Czech Republic.
- 773 0_
- $w MED00188133 $t Pathogens and disease $x 2049-632X $g Roč. 75, č. 7 (2017)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28830077 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180709 $b ABA008
- 991 __
- $a 20180718114746 $b ABA008
- 999 __
- $a ok $b bmc $g 1316849 $s 1021639
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 75 $c 7 $i 2049-632X $m Pathogens and disease $n Pathog Dis $x MED00188133
- GRA __
- $a NV16-27726A $p MZ0
- LZP __
- $a Pubmed-20180709