-
Je něco špatně v tomto záznamu ?
Uric acid contributes greatly to hepatic antioxidant capacity besides protein
T. Mikami, M. Sorimachi
Jazyk angličtina Země Česko
Typ dokumentu časopisecké články
NLK
Directory of Open Access Journals
od 1991
Free Medical Journals
od 1998
ProQuest Central
od 2005-01-01
Medline Complete (EBSCOhost)
od 2006-01-01
Nursing & Allied Health Database (ProQuest)
od 2005-01-01
Health & Medicine (ProQuest)
od 2005-01-01
ROAD: Directory of Open Access Scholarly Resources
od 1998
- MeSH
- alantoin metabolismus MeSH
- alopurinol farmakologie MeSH
- antioxidancia metabolismus MeSH
- inhibitory enzymů farmakologie MeSH
- játra účinky léků metabolismus MeSH
- kyselina močová metabolismus MeSH
- myši inbrední ICR MeSH
- oxidační stres MeSH
- reaktivní formy kyslíku metabolismus MeSH
- xanthinoxidasa antagonisté a inhibitory metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Uric acid is the end-product of purine nucleotide metabolism and an increase in uric acid concentration in the body results in hyperuricemia, ultimately leading to gout. However, uric acid is a potent antioxidant and interacts with reactive oxygen species (ROS) to be non-enzymatically converted to allantoin. Uric acid accounts for approximately 60 % of antioxidant capacity in the plasma; however, its contribution to tissue antioxidant capacity is unknown. In this study, the contribution of uric acid to tissue antioxidant capacity and its conversion to allantoin by scavenging ROS in tissue were examined. The results showed that a decrease in hepatic uric acid content via allopurinol administration significantly reduced hepatic total-radical trapping antioxidant parameter (TRAP) content in protein-free cytosol. Additionally, treating protein-free cytosol with uricase led to a further reduction of hepatic TRAP content. Allantoin was also detected in the solution containing protein-free cytosol that reacted with ROS. These findings suggest that in the absence of protein, uric acid contributes greatly to antioxidant capacity in the liver, where uric acid is converted to allantoin by scavenging ROS.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18027504
- 003
- CZ-PrNML
- 005
- 20180815074339.0
- 007
- ta
- 008
- 180807s2017 xr d f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.33549/physiolres.933555 $2 doi
- 035 __
- $a (PubMed)28937257
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xr
- 100 1_
- $a Mikami, T. $u Department of Health and Sports Science, Nippon Medical School, Musashino, Tokyo, Japan
- 245 10
- $a Uric acid contributes greatly to hepatic antioxidant capacity besides protein / $c T. Mikami, M. Sorimachi
- 520 9_
- $a Uric acid is the end-product of purine nucleotide metabolism and an increase in uric acid concentration in the body results in hyperuricemia, ultimately leading to gout. However, uric acid is a potent antioxidant and interacts with reactive oxygen species (ROS) to be non-enzymatically converted to allantoin. Uric acid accounts for approximately 60 % of antioxidant capacity in the plasma; however, its contribution to tissue antioxidant capacity is unknown. In this study, the contribution of uric acid to tissue antioxidant capacity and its conversion to allantoin by scavenging ROS in tissue were examined. The results showed that a decrease in hepatic uric acid content via allopurinol administration significantly reduced hepatic total-radical trapping antioxidant parameter (TRAP) content in protein-free cytosol. Additionally, treating protein-free cytosol with uricase led to a further reduction of hepatic TRAP content. Allantoin was also detected in the solution containing protein-free cytosol that reacted with ROS. These findings suggest that in the absence of protein, uric acid contributes greatly to antioxidant capacity in the liver, where uric acid is converted to allantoin by scavenging ROS.
- 650 _2
- $a alantoin $x metabolismus $7 D000481
- 650 _2
- $a alopurinol $x farmakologie $7 D000493
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a antioxidancia $x metabolismus $7 D000975
- 650 _2
- $a inhibitory enzymů $x farmakologie $7 D004791
- 650 _2
- $a játra $x účinky léků $x metabolismus $7 D008099
- 650 _2
- $a myši inbrední ICR $7 D008813
- 650 _2
- $a oxidační stres $7 D018384
- 650 _2
- $a reaktivní formy kyslíku $x metabolismus $7 D017382
- 650 _2
- $a kyselina močová $x metabolismus $7 D014527
- 650 _2
- $a xanthinoxidasa $x antagonisté a inhibitory $x metabolismus $7 D014969
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Sorimachi, M. $u JOKAKU Inc., Minato-ku, Tokyo, Japan
- 773 0_
- $w MED00003824 $t Physiological research $x 1802-9973 $g Roč. 66, č. 6 (2017), s. 1001-1007
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28937257 $y Pubmed
- 910 __
- $a ABA008 $b A 4120 $c 266 $y 4 $z 0
- 990 __
- $a 20180807 $b ABA008
- 991 __
- $a 20180813083231 $b ABA008
- 999 __
- $a ok $b bmc $g 1326208 $s 1024452
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 66 $c 6 $d 1001-1007 $e 20170922 $i 1802-9973 $m Physiological research $n Physiol. Res. (Print) $x MED00003824
- LZP __
- $b NLK118 $a Pubmed-20180807