Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Electrocardiogram-synchronized pulsatile extracorporeal life support preserves left ventricular function and coronary flow in a porcine model of cardiogenic shock

P. Ostadal, M. Mlcek, H. Gorhan, I. Simundic, S. Strunina, M. Hrachovina, A. Krüger, D. Vondrakova, M. Janotka, P. Hala, M. Mates, M. Ostadal, JC. Leiter, O. Kittnar, P. Neuzil,

. 2018 ; 13 (4) : e0196321. [pub] 20180424

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

INTRODUCTION: Veno-arterial extracorporeal life support (ECLS) is increasingly being used to treat rapidly progressing or severe cardiogenic shock. However, it has been repeatedly shown that increased afterload associated with ECLS significantly diminishes left ventricular (LV) performance. The objective of the present study was to compare LV function and coronary flow during standard continuous-flow ECLS support and electrocardiogram (ECG)-synchronized pulsatile ECLS flow in a porcine model of cardiogenic shock. METHODS: Sixteen female swine (mean body weight 45 kg) underwent ECLS implantation under general anesthesia and artificial ventilation. Subsequently, acute cardiogenic shock, with documented signs of tissue hypoperfusion, was induced by initiating global myocardial hypoxia. Hemodynamic cardiac performance variables and coronary flow were then measured at different rates of continuous or pulsatile ECLS flow (ranging from 1 L/min to 4 L/min) using arterial and venous catheters, a pulmonary artery catheter, an LV pressure-volume loop catheter, and a Doppler coronary guide-wire. RESULTS: Myocardial hypoxia resulted in declines in mean cardiac output to 1.7±0.7 L/min, systolic blood pressure to 64±22 mmHg, and LV ejection fraction (LVEF) to 22±7%. Synchronized pulsatile flow was associated with a significant reduction in LV end-systolic volume by 6.2 mL (6.7%), an increase in LV stroke volume by 5.0 mL (17.4%), higher LVEF by 4.5% (18.8% relative), cardiac output by 0.37 L/min (17.1%), and mean arterial pressure by 3.0 mmHg (5.5%) when compared with continuous ECLS flow at all ECLS flow rates (P<0.05). At selected ECLS flow rates, pulsatile flow also reduced LV end-diastolic pressure, end-diastolic volume, and systolic pressure. ECG-synchronized pulsatile flow was also associated with significantly increased (7% to 22%) coronary flow at all ECLS flow rates. CONCLUSION: ECG-synchronized pulsatile ECLS flow preserved LV function and coronary flow compared with standard continuous-flow ECLS in a porcine model of cardiogenic shock.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18033132
003      
CZ-PrNML
005      
20240918120613.0
007      
ta
008      
181008s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0196321 $2 doi
035    __
$a (PubMed)29689088
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Ostadal, Petr $u Cardiovascular Center, Na Homolce Hospital, Prague, Czech Republic.
245    10
$a Electrocardiogram-synchronized pulsatile extracorporeal life support preserves left ventricular function and coronary flow in a porcine model of cardiogenic shock / $c P. Ostadal, M. Mlcek, H. Gorhan, I. Simundic, S. Strunina, M. Hrachovina, A. Krüger, D. Vondrakova, M. Janotka, P. Hala, M. Mates, M. Ostadal, JC. Leiter, O. Kittnar, P. Neuzil,
520    9_
$a INTRODUCTION: Veno-arterial extracorporeal life support (ECLS) is increasingly being used to treat rapidly progressing or severe cardiogenic shock. However, it has been repeatedly shown that increased afterload associated with ECLS significantly diminishes left ventricular (LV) performance. The objective of the present study was to compare LV function and coronary flow during standard continuous-flow ECLS support and electrocardiogram (ECG)-synchronized pulsatile ECLS flow in a porcine model of cardiogenic shock. METHODS: Sixteen female swine (mean body weight 45 kg) underwent ECLS implantation under general anesthesia and artificial ventilation. Subsequently, acute cardiogenic shock, with documented signs of tissue hypoperfusion, was induced by initiating global myocardial hypoxia. Hemodynamic cardiac performance variables and coronary flow were then measured at different rates of continuous or pulsatile ECLS flow (ranging from 1 L/min to 4 L/min) using arterial and venous catheters, a pulmonary artery catheter, an LV pressure-volume loop catheter, and a Doppler coronary guide-wire. RESULTS: Myocardial hypoxia resulted in declines in mean cardiac output to 1.7±0.7 L/min, systolic blood pressure to 64±22 mmHg, and LV ejection fraction (LVEF) to 22±7%. Synchronized pulsatile flow was associated with a significant reduction in LV end-systolic volume by 6.2 mL (6.7%), an increase in LV stroke volume by 5.0 mL (17.4%), higher LVEF by 4.5% (18.8% relative), cardiac output by 0.37 L/min (17.1%), and mean arterial pressure by 3.0 mmHg (5.5%) when compared with continuous ECLS flow at all ECLS flow rates (P<0.05). At selected ECLS flow rates, pulsatile flow also reduced LV end-diastolic pressure, end-diastolic volume, and systolic pressure. ECG-synchronized pulsatile flow was also associated with significantly increased (7% to 22%) coronary flow at all ECLS flow rates. CONCLUSION: ECG-synchronized pulsatile ECLS flow preserved LV function and coronary flow compared with standard continuous-flow ECLS in a porcine model of cardiogenic shock.
650    _2
$a zvířata $7 D000818
650    _2
$a koronární cirkulace $x fyziologie $7 D003326
650    _2
$a koronární cévy $x patofyziologie $7 D003331
650    12
$a modely nemocí na zvířatech $7 D004195
650    _2
$a elektrokardiografie $x metody $7 D004562
650    _2
$a mimotělní membránová oxygenace $x metody $7 D015199
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a hemodynamika $7 D006439
650    _2
$a resuscitační péče $x metody $7 D008020
650    _2
$a pulzatilní průtok $x fyziologie $7 D011673
650    _2
$a kardiogenní šok $x patologie $x patofyziologie $x terapie $7 D012770
650    12
$a prasata $7 D013552
650    _2
$a funkce levé komory srdeční $x fyziologie $7 D016277
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Mlcek, Mikulas $u Department of Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
700    1_
$a Gorhan, Holger $u Xenios AG, Heilbronn, Germany.
700    1_
$a Simundic, Ivo $u Xenios AG, Heilbronn, Germany.
700    1_
$a Strunina, Svitlana $u Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic.
700    1_
$a Hrachovina, Matej $u Department of Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
700    1_
$a Krüger, Andreas $u Cardiovascular Center, Na Homolce Hospital, Prague, Czech Republic.
700    1_
$a Vondráková, Dagmar $u Cardiovascular Center, Na Homolce Hospital, Prague, Czech Republic. $7 xx0322733
700    1_
$a Janotka, Marek $u Cardiovascular Center, Na Homolce Hospital, Prague, Czech Republic.
700    1_
$a Hala, Pavel $u Cardiovascular Center, Na Homolce Hospital, Prague, Czech Republic.
700    1_
$a Mates, Martin $u Cardiovascular Center, Na Homolce Hospital, Prague, Czech Republic.
700    1_
$a Ostadal, Martin $u Deparment of Orthopedics, Na Bulovce Hospital, Prague, Czech Republic.
700    1_
$a Leiter, James C $u Department of Molecular and Integrative Biology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America.
700    1_
$a Kittnar, Otomar $u Department of Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
700    1_
$a Neuzil, Petr $u Cardiovascular Center, Na Homolce Hospital, Prague, Czech Republic.
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 13, č. 4 (2018), s. e0196321
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29689088 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20181008 $b ABA008
991    __
$a 20240918120608 $b ABA008
999    __
$a ok $b bmc $g 1340813 $s 1030126
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 13 $c 4 $d e0196321 $e 20180424 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20181008

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...