• Je něco špatně v tomto záznamu ?

Signals of Systemic Immunity in Plants: Progress and Open Questions

AL. Ádám, ZÁ. Nagy, G. Kátay, E. Mergenthaler, O. Viczián,

. 2018 ; 19 (4) : . [pub] 20180410

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc18033170

Systemic acquired resistance (SAR) is a defence mechanism that induces protection against a wide range of pathogens in distant, pathogen-free parts of plants after a primary inoculation. Multiple mobile compounds were identified as putative SAR signals or important factors for influencing movement of SAR signalling elements in Arabidopsis and tobacco. These include compounds with very different chemical structures like lipid transfer protein DIR1 (DEFECTIVE IN INDUCED RESISTANCE1), methyl salicylate (MeSA), dehydroabietinal (DA), azelaic acid (AzA), glycerol-3-phosphate dependent factor (G3P) and the lysine catabolite pipecolic acid (Pip). Genetic studies with different SAR-deficient mutants and silenced lines support the idea that some of these compounds (MeSA, DIR1 and G3P) are activated only when SAR is induced in darkness. In addition, although AzA doubled in phloem exudate of tobacco mosaic virus (TMV) infected tobacco leaves, external AzA treatment could not induce resistance neither to viral nor bacterial pathogens, independent of light conditions. Besides light intensity and timing of light exposition after primary inoculation, spectral distribution of light could also influence the SAR induction capacity. Recent data indicated that TMV and CMV (cucumber mosaic virus) infection in tobacco, like bacteria in Arabidopsis, caused massive accumulation of Pip. Treatment of tobacco leaves with Pip in the light, caused a drastic and significant local and systemic decrease in lesion size of TMV infection. Moreover, two very recent papers, added in proof, demonstrated the role of FMO1 (FLAVIN-DEPENDENT-MONOOXYGENASE1) in conversion of Pip to N-hydroxypipecolic acid (NHP). NHP systemically accumulates after microbial attack and acts as a potent inducer of plant immunity to bacterial and oomycete pathogens in Arabidopsis. These results argue for the pivotal role of Pip and NHP as an important signal compound of SAR response in different plants against different pathogens.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18033170
003      
CZ-PrNML
005      
20181010124900.0
007      
ta
008      
181008s2018 sz f 000 00|eng||
009      
AR
024    7_
$a 10.3390/ijms19041146 $2 doi
035    __
$a (PubMed)29642641
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Ádám, Attila L $u Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary. adam.attila@agrar.mta.hu.
245    10
$a Signals of Systemic Immunity in Plants: Progress and Open Questions / $c AL. Ádám, ZÁ. Nagy, G. Kátay, E. Mergenthaler, O. Viczián,
520    9_
$a Systemic acquired resistance (SAR) is a defence mechanism that induces protection against a wide range of pathogens in distant, pathogen-free parts of plants after a primary inoculation. Multiple mobile compounds were identified as putative SAR signals or important factors for influencing movement of SAR signalling elements in Arabidopsis and tobacco. These include compounds with very different chemical structures like lipid transfer protein DIR1 (DEFECTIVE IN INDUCED RESISTANCE1), methyl salicylate (MeSA), dehydroabietinal (DA), azelaic acid (AzA), glycerol-3-phosphate dependent factor (G3P) and the lysine catabolite pipecolic acid (Pip). Genetic studies with different SAR-deficient mutants and silenced lines support the idea that some of these compounds (MeSA, DIR1 and G3P) are activated only when SAR is induced in darkness. In addition, although AzA doubled in phloem exudate of tobacco mosaic virus (TMV) infected tobacco leaves, external AzA treatment could not induce resistance neither to viral nor bacterial pathogens, independent of light conditions. Besides light intensity and timing of light exposition after primary inoculation, spectral distribution of light could also influence the SAR induction capacity. Recent data indicated that TMV and CMV (cucumber mosaic virus) infection in tobacco, like bacteria in Arabidopsis, caused massive accumulation of Pip. Treatment of tobacco leaves with Pip in the light, caused a drastic and significant local and systemic decrease in lesion size of TMV infection. Moreover, two very recent papers, added in proof, demonstrated the role of FMO1 (FLAVIN-DEPENDENT-MONOOXYGENASE1) in conversion of Pip to N-hydroxypipecolic acid (NHP). NHP systemically accumulates after microbial attack and acts as a potent inducer of plant immunity to bacterial and oomycete pathogens in Arabidopsis. These results argue for the pivotal role of Pip and NHP as an important signal compound of SAR response in different plants against different pathogens.
650    _2
$a Arabidopsis $x genetika $x mikrobiologie $x virologie $7 D017360
650    _2
$a světlo $7 D008027
650    _2
$a imunita rostlin $x genetika $x účinky záření $7 D057865
650    12
$a signální transdukce $7 D015398
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
700    1_
$a Nagy, Zoltán Á $u Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic. zoltan.nagy@mendelu.cz.
700    1_
$a Kátay, György $u Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary. katay.gyorgy@agrar.mta.hu.
700    1_
$a Mergenthaler, Emese $u Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary. mergenthaler.emese@agrar.mta.hu.
700    1_
$a Viczián, Orsolya $u Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary. viczian.orsolya@agrar.mta.hu.
773    0_
$w MED00176142 $t International journal of molecular sciences $x 1422-0067 $g Roč. 19, č. 4 (2018)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29642641 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20181008 $b ABA008
991    __
$a 20181010125349 $b ABA008
999    __
$a ok $b bmc $g 1340832 $s 1030164
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 19 $c 4 $e 20180410 $i 1422-0067 $m International journal of molecular sciences $n Int J Mol Sci $x MED00176142
LZP    __
$a Pubmed-20181008

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...