• Je něco špatně v tomto záznamu ?

The crystal structure of XdpB, the bacterial old yellow enzyme, in an FMN-free form

J. Zahradník, P. Kolenko, A. Palyzová, J. Černý, L. Kolářová, E. Kyslíková, H. Marešová, M. Grulich, J. Nunvar, M. Šulc, P. Kyslík, B. Schneider,

. 2018 ; 13 (4) : e0195299. [pub] 20180409

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc18033176

Old Yellow Enzymes (OYEs) are NAD(P)H dehydrogenases of not fully resolved physiological roles that are widespread among bacteria, plants, and fungi and have a great potential for biotechnological applications. We determined the apo form crystal structure of a member of the OYE class, glycerol trinitrate reductase XdpB, from Agrobacterium bohemicum R89-1 at 2.1 Å resolution. In agreement with the structures of the related bacterial OYEs, the structure revealed the TIM barrel fold with an N-terminal β-hairpin lid, but surprisingly, the structure did not contain its cofactor FMN. Its putative binding site was occupied by a pentapeptide TTSDN from the C-terminus of a symmetry related molecule. Biochemical experiments confirmed a specific concentration-dependent oligomerization and a low FMN content. The blocking of the FMN binding site can exist in vivo and regulates enzyme activity. Our bioinformatic analysis indicated that a similar self-inhibition could be expected in more OYEs which we designated as subgroup OYE C1. This subgroup is widespread among G-bacteria and can be recognized by the conserved sequence GxxDYP in proximity of the C termini. In proteobacteria, the C1 subgroup OYEs are typically coded in one operon with short-chain dehydrogenase. This operon is controlled by the tetR-like transcriptional regulator. OYEs coded in these operons are unlikely to be involved in the oxidative stress response as the other known members of the OYE family because no upregulation of XdpB was observed after exposing A. bohemicum R89-1 to oxidative stress.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18033176
003      
CZ-PrNML
005      
20181010125453.0
007      
ta
008      
181008s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0195299 $2 doi
035    __
$a (PubMed)29630677
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Zahradník, Jiří $u Institute of Biotechnology CAS, v. v. i., BIOCEV, Vestec, Prague West, Czech Republic. Department of Biochemistry, Faculty of Science, Charles University Prague, Czech Republic. Institute of Microbiology CAS, v. v. i., Prague, Czech Republic.
245    14
$a The crystal structure of XdpB, the bacterial old yellow enzyme, in an FMN-free form / $c J. Zahradník, P. Kolenko, A. Palyzová, J. Černý, L. Kolářová, E. Kyslíková, H. Marešová, M. Grulich, J. Nunvar, M. Šulc, P. Kyslík, B. Schneider,
520    9_
$a Old Yellow Enzymes (OYEs) are NAD(P)H dehydrogenases of not fully resolved physiological roles that are widespread among bacteria, plants, and fungi and have a great potential for biotechnological applications. We determined the apo form crystal structure of a member of the OYE class, glycerol trinitrate reductase XdpB, from Agrobacterium bohemicum R89-1 at 2.1 Å resolution. In agreement with the structures of the related bacterial OYEs, the structure revealed the TIM barrel fold with an N-terminal β-hairpin lid, but surprisingly, the structure did not contain its cofactor FMN. Its putative binding site was occupied by a pentapeptide TTSDN from the C-terminus of a symmetry related molecule. Biochemical experiments confirmed a specific concentration-dependent oligomerization and a low FMN content. The blocking of the FMN binding site can exist in vivo and regulates enzyme activity. Our bioinformatic analysis indicated that a similar self-inhibition could be expected in more OYEs which we designated as subgroup OYE C1. This subgroup is widespread among G-bacteria and can be recognized by the conserved sequence GxxDYP in proximity of the C termini. In proteobacteria, the C1 subgroup OYEs are typically coded in one operon with short-chain dehydrogenase. This operon is controlled by the tetR-like transcriptional regulator. OYEs coded in these operons are unlikely to be involved in the oxidative stress response as the other known members of the OYE family because no upregulation of XdpB was observed after exposing A. bohemicum R89-1 to oxidative stress.
650    _2
$a Agrobacterium $x enzymologie $x genetika $7 D060054
650    _2
$a bakteriální proteiny $x chemie $x genetika $x metabolismus $7 D001426
650    _2
$a katalytická doména $7 D020134
650    _2
$a výpočetní biologie $7 D019295
650    _2
$a krystalografie rentgenová $7 D018360
650    _2
$a flavinmononukleotid $x metabolismus $7 D005486
650    _2
$a bakteriální geny $7 D005798
650    _2
$a kinetika $7 D007700
650    _2
$a molekulární modely $7 D008958
650    _2
$a NADPH-dehydrogenasa $x chemie $x genetika $x metabolismus $7 D009252
650    _2
$a operon $7 D009876
650    _2
$a oxidační stres $7 D018384
650    _2
$a oxidoreduktasy $x chemie $x genetika $x metabolismus $7 D010088
650    _2
$a kvarterní struktura proteinů $7 D020836
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kolenko, Petr $u Institute of Biotechnology CAS, v. v. i., BIOCEV, Vestec, Prague West, Czech Republic. Dept. of Solid State Engineering, FNSPE Czech Technical University, Prague, Czech Republic.
700    1_
$a Palyzová, Andrea $u Institute of Microbiology CAS, v. v. i., Prague, Czech Republic.
700    1_
$a Černý, Jiří $u Institute of Biotechnology CAS, v. v. i., BIOCEV, Vestec, Prague West, Czech Republic.
700    1_
$a Kolářová, Lucie $u Institute of Biotechnology CAS, v. v. i., BIOCEV, Vestec, Prague West, Czech Republic.
700    1_
$a Kyslíková, Eva $u Institute of Microbiology CAS, v. v. i., Prague, Czech Republic.
700    1_
$a Marešová, Helena $u Institute of Microbiology CAS, v. v. i., Prague, Czech Republic.
700    1_
$a Grulich, Michal $u Institute of Microbiology CAS, v. v. i., Prague, Czech Republic.
700    1_
$a Nunvar, Jaroslav $u Institute of Biotechnology CAS, v. v. i., BIOCEV, Vestec, Prague West, Czech Republic.
700    1_
$a Šulc, Miroslav $u Department of Biochemistry, Faculty of Science, Charles University Prague, Czech Republic.
700    1_
$a Kyslík, Pavel $u Institute of Microbiology CAS, v. v. i., Prague, Czech Republic.
700    1_
$a Schneider, Bohdan $u Institute of Biotechnology CAS, v. v. i., BIOCEV, Vestec, Prague West, Czech Republic.
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 13, č. 4 (2018), s. e0195299
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29630677 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20181008 $b ABA008
991    __
$a 20181010125943 $b ABA008
999    __
$a ok $b bmc $g 1340833 $s 1030170
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 13 $c 4 $d e0195299 $e 20180409 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20181008

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...