-
Je něco špatně v tomto záznamu ?
Silver ions increase plasma membrane permeability through modulation of intracellular calcium levels in tobacco BY-2 cells
P. Klíma, M. Laňková, F. Vandenbussche, D. Van Der Straeten, J. Petrášek,
Jazyk angličtina Země Německo
Typ dokumentu časopisecké články
- MeSH
- buněčná membrána účinky léků metabolismus MeSH
- buněčné linie MeSH
- cytosol účinky léků metabolismus MeSH
- intracelulární prostor metabolismus MeSH
- ionty MeSH
- kyseliny indoloctové metabolismus MeSH
- permeabilita buněčné membrány účinky léků MeSH
- rostlinné buňky účinky léků metabolismus MeSH
- stříbro farmakologie MeSH
- tabák cytologie metabolismus MeSH
- vápník metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
KEY MESSAGE: Silver ions increase plasma membrane permeability for water and small organic compounds through their stimulatory effect on plasma membrane calcium channels, with subsequent modulation of intracellular calcium levels and ion homeostasis. The action of silver ions at the plant plasma membrane is largely connected with the inhibition of ethylene signalling thanks to the ability of silver ion to replace the copper cofactor in the ethylene receptor. A link coupling the action of silver ions and cellular auxin efflux has been suggested earlier by their possible direct interaction with auxin efflux carriers or by influencing plasma membrane permeability. Using tobacco BY-2 cells, we demonstrate here that besides a dramatic increase of efflux of synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthalene acetic acid (NAA), treatment with AgNO3 resulted in enhanced efflux of the cytokinin trans-zeatin (tZ) as well as the auxin structural analogues tryptophan (Trp) and benzoic acid (BA). The application of AgNO3 was accompanied by gradual water loss and plasmolysis. The observed effects were dependent on the availability of extracellular calcium ions (Ca2+) as shown by comparison of transport assays in Ca2+-rich and Ca2+-free buffers and upon treatment with inhibitors of plasma membrane Ca2+-permeable channels Al3+ and ruthenium red, both abolishing the effect of AgNO3. Confocal microscopy of Ca2+-sensitive fluorescence indicator Fluo-4FF, acetoxymethyl (AM) ester suggested that the extracellular Ca2+ availability is necessary to trigger the response to silver ions and that the intracellular Ca2+ pool alone is not sufficient for this effect. Altogether, our data suggest that in plant cells the effects of silver ions originate from the primal modification of the internal calcium levels, possibly by their interaction with Ca2+-permeable channels at the plasma membrane.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18033267
- 003
- CZ-PrNML
- 005
- 20181012113917.0
- 007
- ta
- 008
- 181008s2018 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s00299-018-2269-6 $2 doi
- 035 __
- $a (PubMed)29502206
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Klíma, Petr $u Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic.
- 245 10
- $a Silver ions increase plasma membrane permeability through modulation of intracellular calcium levels in tobacco BY-2 cells / $c P. Klíma, M. Laňková, F. Vandenbussche, D. Van Der Straeten, J. Petrášek,
- 520 9_
- $a KEY MESSAGE: Silver ions increase plasma membrane permeability for water and small organic compounds through their stimulatory effect on plasma membrane calcium channels, with subsequent modulation of intracellular calcium levels and ion homeostasis. The action of silver ions at the plant plasma membrane is largely connected with the inhibition of ethylene signalling thanks to the ability of silver ion to replace the copper cofactor in the ethylene receptor. A link coupling the action of silver ions and cellular auxin efflux has been suggested earlier by their possible direct interaction with auxin efflux carriers or by influencing plasma membrane permeability. Using tobacco BY-2 cells, we demonstrate here that besides a dramatic increase of efflux of synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthalene acetic acid (NAA), treatment with AgNO3 resulted in enhanced efflux of the cytokinin trans-zeatin (tZ) as well as the auxin structural analogues tryptophan (Trp) and benzoic acid (BA). The application of AgNO3 was accompanied by gradual water loss and plasmolysis. The observed effects were dependent on the availability of extracellular calcium ions (Ca2+) as shown by comparison of transport assays in Ca2+-rich and Ca2+-free buffers and upon treatment with inhibitors of plasma membrane Ca2+-permeable channels Al3+ and ruthenium red, both abolishing the effect of AgNO3. Confocal microscopy of Ca2+-sensitive fluorescence indicator Fluo-4FF, acetoxymethyl (AM) ester suggested that the extracellular Ca2+ availability is necessary to trigger the response to silver ions and that the intracellular Ca2+ pool alone is not sufficient for this effect. Altogether, our data suggest that in plant cells the effects of silver ions originate from the primal modification of the internal calcium levels, possibly by their interaction with Ca2+-permeable channels at the plasma membrane.
- 650 _2
- $a vápník $x metabolismus $7 D002118
- 650 _2
- $a buněčné linie $7 D002460
- 650 _2
- $a buněčná membrána $x účinky léků $x metabolismus $7 D002462
- 650 _2
- $a permeabilita buněčné membrány $x účinky léků $7 D002463
- 650 _2
- $a cytosol $x účinky léků $x metabolismus $7 D003600
- 650 _2
- $a kyseliny indoloctové $x metabolismus $7 D007210
- 650 _2
- $a intracelulární prostor $x metabolismus $7 D042541
- 650 _2
- $a ionty $7 D007477
- 650 _2
- $a rostlinné buňky $x účinky léků $x metabolismus $7 D059828
- 650 _2
- $a stříbro $x farmakologie $7 D012834
- 650 _2
- $a tabák $x cytologie $x metabolismus $7 D014026
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Laňková, Martina $u Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic.
- 700 1_
- $a Vandenbussche, Filip $u Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, Ghent, Belgium.
- 700 1_
- $a Van Der Straeten, Dominique $u Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, Ghent, Belgium.
- 700 1_
- $a Petrášek, Jan $u Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic. petrasek@ueb.cas.cz. Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic. petrasek@ueb.cas.cz.
- 773 0_
- $w MED00005788 $t Plant cell reports $x 1432-203X $g Roč. 37, č. 5 (2018), s. 809-818
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29502206 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20181008 $b ABA008
- 991 __
- $a 20181012114409 $b ABA008
- 999 __
- $a ok $b bmc $g 1340078 $s 1030261
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 37 $c 5 $d 809-818 $e 20180303 $i 1432-203X $m Plant cell reports $n Plant Cell Rep $x MED00005788
- LZP __
- $a Pubmed-20181008