• Je něco špatně v tomto záznamu ?

Gibberellin DELLA signaling targets the retromer complex to redirect protein trafficking to the plasma membrane

Y. Salanenka, I. Verstraeten, C. Löfke, K. Tabata, S. Naramoto, M. Glanc, J. Friml,

. 2018 ; 115 (14) : 3716-3721. [pub] 20180220

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc18033300
E-zdroje Online Plný text

NLK Free Medical Journals od 1915 do Před 6 měsíci
Freely Accessible Science Journals od 1915 do Před 6 měsíci
PubMed Central od 1915 do Před 6 měsíci
Europe PubMed Central od 1915 do Před 6 měsíci
Open Access Digital Library od 1915-01-01
Open Access Digital Library od 1915-01-15

The plant hormone gibberellic acid (GA) is a crucial regulator of growth and development. The main paradigm of GA signaling puts forward transcriptional regulation via the degradation of DELLA transcriptional repressors. GA has also been shown to regulate tropic responses by modulation of the plasma membrane incidence of PIN auxin transporters by an unclear mechanism. Here we uncovered the cellular and molecular mechanisms by which GA redirects protein trafficking and thus regulates cell surface functionality. Photoconvertible reporters revealed that GA balances the protein traffic between the vacuole degradation route and recycling back to the cell surface. Low GA levels promote vacuolar delivery and degradation of multiple cargos, including PIN proteins, whereas high GA levels promote their recycling to the plasma membrane. This GA effect requires components of the retromer complex, such as Sorting Nexin 1 (SNX1) and its interacting, microtubule (MT)-associated protein, the Cytoplasmic Linker-Associated Protein (CLASP1). Accordingly, GA regulates the subcellular distribution of SNX1 and CLASP1, and the intact MT cytoskeleton is essential for the GA effect on trafficking. This GA cellular action occurs through DELLA proteins that regulate the MT and retromer presumably via their interaction partners Prefoldins (PFDs). Our study identified a branching of the GA signaling pathway at the level of DELLA proteins, which, in parallel to regulating transcription, also target by a nontranscriptional mechanism the retromer complex acting at the intersection of the degradation and recycling trafficking routes. By this mechanism, GA can redirect receptors and transporters to the cell surface, thus coregulating multiple processes, including PIN-dependent auxin fluxes during tropic responses.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18033300
003      
CZ-PrNML
005      
20181010125506.0
007      
ta
008      
181008s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1073/pnas.1721760115 $2 doi
035    __
$a (PubMed)29463731
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Salanenka, Yuliya $u Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
245    10
$a Gibberellin DELLA signaling targets the retromer complex to redirect protein trafficking to the plasma membrane / $c Y. Salanenka, I. Verstraeten, C. Löfke, K. Tabata, S. Naramoto, M. Glanc, J. Friml,
520    9_
$a The plant hormone gibberellic acid (GA) is a crucial regulator of growth and development. The main paradigm of GA signaling puts forward transcriptional regulation via the degradation of DELLA transcriptional repressors. GA has also been shown to regulate tropic responses by modulation of the plasma membrane incidence of PIN auxin transporters by an unclear mechanism. Here we uncovered the cellular and molecular mechanisms by which GA redirects protein trafficking and thus regulates cell surface functionality. Photoconvertible reporters revealed that GA balances the protein traffic between the vacuole degradation route and recycling back to the cell surface. Low GA levels promote vacuolar delivery and degradation of multiple cargos, including PIN proteins, whereas high GA levels promote their recycling to the plasma membrane. This GA effect requires components of the retromer complex, such as Sorting Nexin 1 (SNX1) and its interacting, microtubule (MT)-associated protein, the Cytoplasmic Linker-Associated Protein (CLASP1). Accordingly, GA regulates the subcellular distribution of SNX1 and CLASP1, and the intact MT cytoskeleton is essential for the GA effect on trafficking. This GA cellular action occurs through DELLA proteins that regulate the MT and retromer presumably via their interaction partners Prefoldins (PFDs). Our study identified a branching of the GA signaling pathway at the level of DELLA proteins, which, in parallel to regulating transcription, also target by a nontranscriptional mechanism the retromer complex acting at the intersection of the degradation and recycling trafficking routes. By this mechanism, GA can redirect receptors and transporters to the cell surface, thus coregulating multiple processes, including PIN-dependent auxin fluxes during tropic responses.
650    _2
$a Arabidopsis $x růst a vývoj $x metabolismus $7 D017360
650    _2
$a proteiny huseníčku $x genetika $x metabolismus $7 D029681
650    _2
$a buněčná membrána $x metabolismus $7 D002462
650    _2
$a regulace genové exprese u rostlin $x účinky léků $7 D018506
650    _2
$a gibereliny $x farmakologie $7 D005875
650    _2
$a kyseliny indoloctové $x farmakologie $7 D007210
650    _2
$a mikrotubuly $x metabolismus $7 D008870
650    _2
$a regulátory růstu rostlin $x farmakologie $7 D010937
650    _2
$a transport proteinů $7 D021381
650    _2
$a signální transdukce $7 D015398
650    _2
$a třídící nexiny $x genetika $x metabolismus $7 D058305
650    _2
$a vakuoly $x metabolismus $7 D014617
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Verstraeten, Inge $u Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
700    1_
$a Löfke, Christian $u Gregor Mendel Institute of Molecular Plant Biology, 1030 Vienna, Austria.
700    1_
$a Tabata, Kaori $u Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
700    1_
$a Naramoto, Satoshi $u Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 980-8577 Sendai, Miyagi, Japan.
700    1_
$a Glanc, Matouš $u Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria. Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague, Czech Republic.
700    1_
$a Friml, Jiří $u Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria; jiri.friml@ist.ac.at.
773    0_
$w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 115, č. 14 (2018), s. 3716-3721
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29463731 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20181008 $b ABA008
991    __
$a 20181010125956 $b ABA008
999    __
$a ok $b bmc $g 1340873 $s 1030294
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 115 $c 14 $d 3716-3721 $e 20180220 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
LZP    __
$a Pubmed-20181008

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...