Gibberellin DELLA signaling targets the retromer complex to redirect protein trafficking to the plasma membrane
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
282300
European Research Council - International
PubMed
29463731
PubMed Central
PMC5889667
DOI
10.1073/pnas.1721760115
PII: 1721760115
Knihovny.cz E-zdroje
- Klíčová slova
- DELLA, gibberellin, microtubules, polar auxin transport, vesicle trafficking,
- MeSH
- Arabidopsis růst a vývoj metabolismus MeSH
- buněčná membrána metabolismus MeSH
- gibereliny farmakologie MeSH
- kyseliny indoloctové farmakologie MeSH
- mikrotubuly metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- regulátory růstu rostlin farmakologie MeSH
- signální transdukce MeSH
- transport proteinů MeSH
- třídící nexiny genetika metabolismus MeSH
- vakuoly metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- GAI protein, Arabidopsis MeSH Prohlížeč
- gibereliny MeSH
- kyseliny indoloctové MeSH
- proteiny huseníčku MeSH
- regulátory růstu rostlin MeSH
- SNX1 protein, Arabidopsis MeSH Prohlížeč
- třídící nexiny MeSH
The plant hormone gibberellic acid (GA) is a crucial regulator of growth and development. The main paradigm of GA signaling puts forward transcriptional regulation via the degradation of DELLA transcriptional repressors. GA has also been shown to regulate tropic responses by modulation of the plasma membrane incidence of PIN auxin transporters by an unclear mechanism. Here we uncovered the cellular and molecular mechanisms by which GA redirects protein trafficking and thus regulates cell surface functionality. Photoconvertible reporters revealed that GA balances the protein traffic between the vacuole degradation route and recycling back to the cell surface. Low GA levels promote vacuolar delivery and degradation of multiple cargos, including PIN proteins, whereas high GA levels promote their recycling to the plasma membrane. This GA effect requires components of the retromer complex, such as Sorting Nexin 1 (SNX1) and its interacting, microtubule (MT)-associated protein, the Cytoplasmic Linker-Associated Protein (CLASP1). Accordingly, GA regulates the subcellular distribution of SNX1 and CLASP1, and the intact MT cytoskeleton is essential for the GA effect on trafficking. This GA cellular action occurs through DELLA proteins that regulate the MT and retromer presumably via their interaction partners Prefoldins (PFDs). Our study identified a branching of the GA signaling pathway at the level of DELLA proteins, which, in parallel to regulating transcription, also target by a nontranscriptional mechanism the retromer complex acting at the intersection of the degradation and recycling trafficking routes. By this mechanism, GA can redirect receptors and transporters to the cell surface, thus coregulating multiple processes, including PIN-dependent auxin fluxes during tropic responses.
Gregor Mendel Institute of Molecular Plant Biology 1030 Vienna Austria
Institute of Science and Technology Austria 3400 Klosterneuburg Austria
Institute of Science and Technology Austria 3400 Klosterneuburg Austria;
Zobrazit více v PubMed
Bennett M, Bellini C, Van Der Straeten D. Integrative biology: Dissecting cross‐talk between plant signalling pathways. Physiol Plant. 2005;123:109.
Benková E, Hejátko J. Hormone interactions at the root apical meristem. Plant Mol Biol. 2009;69:383–396. PubMed
Weiss D, Ori N. Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol. 2007;144:1240–1246. PubMed PMC
Fu X, Harberd NP. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature. 2003;421:740–743. PubMed
Nemhauser JL, Hong F, Chory J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell. 2006;126:467–475. PubMed
Moubayidin L, et al. The rate of cell differentiation controls the Arabidopsis root meristem growth phase. Curr Biol. 2010;20:1138–1143. PubMed
Gallego-Bartolomé J, Kami C, Fankhauser C, Alabadí D, Blázquez MA. A hormonal regulatory module that provides flexibility to tropic responses. Plant Physiol. 2011;156:1819–1825. PubMed PMC
Willige BC, Isono E, Richter R, Zourelidou M, Schwechheimer C. Gibberellin regulates PIN-FORMED abundance and is required for auxin transport-dependent growth and development in Arabidopsis thaliana. Plant Cell. 2011;23:2184–2195. PubMed PMC
Löfke C, et al. Asymmetric gibberellin signaling regulates vacuolar trafficking of PIN auxin transporters during root gravitropism. Proc Natl Acad Sci USA. 2013;110:3627–3632. PubMed PMC
Adamowski M, Friml J. PIN-dependent auxin transport: Action, regulation, and evolution. Plant Cell. 2015;27:20–32. PubMed PMC
Vanneste S, Friml J. Auxin: A trigger for change in plant development. Cell. 2009;136:1005–1016. PubMed
Kleine-Vehn J, et al. Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc Natl Acad Sci USA. 2008;105:17812–17817. PubMed PMC
Ambrose C, et al. CLASP interacts with sorting nexin 1 to link microtubules and auxin transport via PIN2 recycling in Arabidopsis thaliana. Dev Cell. 2013;24:649–659. PubMed
Rademacher W. Growth retardants: Effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol. 2000;51:501–531. PubMed
Geldner N, Friml J, Stierhof Y-D, Jürgens G, Palme K. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature. 2001;413:425–428. PubMed
Dhonukshe P, et al. Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol. 2007;17:520–527. PubMed
Kleine-Vehn J, et al. ARF GEF-dependent transcytosis and polar delivery of PIN auxin carriers in Arabidopsis. Curr Biol. 2008;18:526–531. PubMed
Kleine-Vehn J, et al. Cellular and molecular requirements for polar PIN targeting and transcytosis in plants. Mol Plant. 2008;1:1056–1066. PubMed
Seaman MNJ. The retromer complex–Endosomal protein recycling and beyond. J Cell Sci. 2012;125:4693–4702. PubMed PMC
Jaillais Y, et al. The retromer protein VPS29 links cell polarity and organ initiation in plants. Cell. 2007;130:1057–1070. PubMed
Nodzyński T, et al. Retromer subunits VPS35A and VPS29 mediate prevacuolar compartment (PVC) function in Arabidopsis. Mol Plant. 2013;6:1849–1862. PubMed
Zwiewka M, et al. The AP-3 adaptor complex is required for vacuolar function in Arabidopsis. Cell Res. 2011;21:1711–1722. PubMed PMC
Carvalho P, Tirnauer JS, Pellman D. Surfing on microtubule ends. Trends Cell Biol. 2003;13:229–237. PubMed
Akhmanova A, Hoogenraad CC. Microtubule plus-end-tracking proteins: Mechanisms and functions. Curr Opin Cell Biol. 2005;17:47–54. PubMed
Ambrose JC, Shoji T, Kotzer AM, Pighin JA, Wasteneys GO. The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division. Plant Cell. 2007;19:2763–2775. PubMed PMC
Shibaoka H. Regulation by gibberellins of the orientation of cortical microtubules in plant cells. Aust J Plant Physiol. 1993;20:461–470.
Shibaoka H. Plant hormone-induced changes in the orientation of cortical microtubules: Alterations in the cross-linking between microtubules and the plasma membrane. Annu Rev Plant Physiol Plant Mol Biol. 1994;45:527–544.
Morejohn LC. The molecular pharmacology of plant tubulin and microtubules. In: Lloyd CW, editor. The Cytoskeletal Basis of Plant Growth and Form. Academic; San Diego: 1991. pp. 29–43.
Nakamura M, Naoi K, Shoji T, Hashimoto T. Low concentrations of propyzamide and oryzalin alter microtubule dynamics in Arabidopsis epidermal cells. Plant Cell Physiol. 2004;45:1330–1334. PubMed
Morejohn LC, Fosket DE. The biochemistry of compounds with anti-microtubule activity in plant cells. Pharmacol Ther. 1991;51:217–230. PubMed
Lin D, et al. Rho GTPase signaling activates microtubule severing to promote microtubule ordering in Arabidopsis. Curr Biol. 2013;23:290–297. PubMed
Nakamura M, Ehrhardt DW, Hashimoto T. Microtubule and katanin-dependent dynamics of microtubule nucleation complexes in the acentrosomal Arabidopsis cortical array. Nat Cell Biol. 2010;12:1064–1070. PubMed
Buschmann H, et al. Helical growth of the Arabidopsis mutant tortifolia1 reveals a plant-specific microtubule-associated protein. Curr Biol. 2004;14:1515–1521. PubMed
Peng J, et al. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev. 1997;11:3194–3205. PubMed PMC
Silverstone AL, et al. Repressing a repressor: Gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell. 2001;13:1555–1566. PubMed PMC
Harberd NP. Botany. Relieving DELLA restraint. Science. 2003;299:1853–1854. PubMed
Locascio A, Blázquez MA, Alabadí D. Dynamic regulation of cortical microtubule organization through prefoldin-DELLA interaction. Curr Biol. 2013;23:804–809. PubMed
Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science. 2002;295:1852–1858. PubMed
Le Bot N, Tsai M-C, Andrews RK, Ahringer J. TAC-1, a regulator of microtubule length in the C. elegans embryo. Curr Biol. 2003;13:1499–1505. PubMed
Lundin VF, Srayko M, Hyman AA, Leroux MR. Efficient chaperone-mediated tubulin biogenesis is essential for cell division and cell migration in C. elegans. Dev Biol. 2008;313:320–334. PubMed
Ueguchi-Tanaka M, Nakajima M, Motoyuki A, Matsuoka M. Gibberellin receptor and its role in gibberellin signaling in plants. Annu Rev Plant Biol. 2007;58:183–198. PubMed
Hoepfner S, et al. Modulation of receptor recycling and degradation by the endosomal kinesin KIF16B. Cell. 2005;121:437–450. PubMed
Proszynski TJ, et al. A genome-wide visual screen reveals a role for sphingolipids and ergosterol in cell surface delivery in yeast. Proc Natl Acad Sci USA. 2005;102:17981–17986. PubMed PMC
Sampathkumar A, et al. Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis. Plant Cell. 2011;23:2302–2313. PubMed PMC
Simons CT, et al. Selective contribution of eukaryotic prefoldin subunits to actin and tubulin binding. J Biol Chem. 2004;279:4196–4203. PubMed
Scheuring D, et al. Actin-dependent vacuolar occupancy of the cell determines auxin-induced growth repression. Proc Natl Acad Sci USA. 2016;113:452–457. PubMed PMC
Leitner J, et al. Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth. Proc Natl Acad Sci USA. 2012;109:8322–8327. PubMed PMC
Abas L, Luschnig C. Maximum yields of microsomal-type membranes from small amounts of plant material without requiring ultracentrifugation. Anal Biochem. 2010;401:217–227. PubMed PMC
Friml J, Benková E, Mayer U, Palme K, Muster G. Automated whole mount localisation techniques for plant seedlings. Plant J. 2003;34:115–124. PubMed
AGC kinases and MAB4/MEL proteins maintain PIN polarity by limiting lateral diffusion in plant cells
CRK5 Protein Kinase Contributes to the Progression of Embryogenesis of Arabidopsis thaliana
Pinstatic Acid Promotes Auxin Transport by Inhibiting PIN Internalization
Mechanistic framework for cell-intrinsic re-establishment of PIN2 polarity after cell division
A Functional Study of AUXILIN-LIKE1 and 2, Two Putative Clathrin Uncoating Factors in Arabidopsis