Arp2/3 Complex Is Required for Auxin-Driven Cell Expansion Through Regulation of Auxin Transporter Homeostasis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32425966
PubMed Central
PMC7212389
DOI
10.3389/fpls.2020.00486
Knihovny.cz E-zdroje
- Klíčová slova
- Arp2/3 complex, actin, auxin, cell expansion, cytoskeleton,
- Publikační typ
- časopisecké články MeSH
The Arp2/3 complex is an actin nucleator shown to be required throughout plant morphogenesis, contributing to processes such as cell expansion, tissue differentiation or cell wall assembly. A recent publication demonstrated that plants lacking functional Arp2/3 complex also present defects in auxin distribution and transport. This work shows that Arp2/3 complex subunits are predominantly expressed in the provasculature, although other plant tissues also show promoter activity (e.g., cotyledons, apical meristems, or root tip). Moreover, auxin can trigger subunit expression, indicating a role of this phytohormone in mediating the complex activity. Further investigation of the functional interaction between Arp2/3 complex and auxin signaling also reveals their cooperation in determining pavement cell shape, presumably through the role of Arp2/3 complex in the correct auxin carrier trafficking. Young seedlings of arpc5 mutants show increased auxin-triggered proteasomal degradation of DII-VENUS and altered PIN3 distribution, with higher levels of the protein in the vacuole. Closer observation of vacuolar morphology revealed the presence of a more fragmented vacuolar compartment when Arp2/3 function is abolished, hinting a generalized role of Arp2/3 complex in endomembrane function and protein trafficking.
Department of Experimental Plant Biology Faculty of Science Charles University Prague Czechia
Institute of Experimental Botany Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Abas L., Benjamins R., Malenica N., Paciorek T., Wiśniewska J., Wirniewska J., et al. (2006). Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat. Cell Biol. 8 249–256. 10.1038/ncb1369 PubMed DOI
Aloni R., Schwalm K., Langhans M., Ullrich C. I. (2003). Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta 216 841–853. 10.1007/s00425-002-0937-8 PubMed DOI
Armour W. J., Barton D. A., Law A. M. K., Overall R. L. (2015). Differential growth in periclinal and anticlinal walls during lobe formation in Arabidopsis cotyledon pavement cells. Plant Cell 27 2484–2500. 10.1105/tpc.114.126664 PubMed DOI PMC
Bachmair A., Zazimalova E., Petrasek J., Luschnig C., Korbei B., Leitner J., et al. (2012). Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth. Proc. Natl. Acad. Sci. U.S.A. 109 8322–8327. 10.1073/pnas.1200824109 PubMed DOI PMC
Bao C., Wang J., Zhang R., Zhang B., Zhang H., Zhou Y., et al. (2012). Arabidopsis VILLIN2 and VILLIN3 act redundantly in sclerenchyma development via bundling of actin filaments. Plant J. 71 962–975. 10.1111/j.1365-313X.2012.05044.x PubMed DOI
Baster P., Robert S., Kleine-Vehn J., Vanneste S., Kania U., Grunewald W., et al. (2013). SCFTIR1/AFB-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism. EMBO J. 32 260–274. 10.1038/emboj.2012.310 PubMed DOI PMC
Belteton S. A., Sawchuk M. G., Donohoe B. S., Scarpella E., Szymanski D. B. (2018). Reassessing the roles of PIN proteins and anticlinal microtubules during pavement cell morphogenesis. Plant Physiol. 176 432–449. 10.1104/pp.17.01554 PubMed DOI PMC
Braybrook S. A., Peaucelle A. (2013). Mechano-chemical aspects of organ formation in Arabidopsis thaliana: the relationship between Auxin and pectin. PLoS One 8:e0057813. 10.1371/journal.pone.0057813 PubMed DOI PMC
Brembu T., Winge P., Seem M., Bones A. M. (2004). NAPP and PIRP encode subunits of a putative wave regulatory protein complex involved in plant cell morphogenesis. Plant Cell 16 2335–2349. 10.1105/tpc.104.023739 PubMed DOI PMC
Brunoud G., Wells D. M., Oliva M., Larrieu A., Mirabet V., Burrow A. H., et al. (2012). A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482 103–106. 10.1038/nature10791 PubMed DOI
Cheng Y., Dai X., Zhao Y. (2007). Auxin synthesized by the YUCCA Flavin Monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19 2430–2439. 10.1105/tpc.107.053009 PubMed DOI PMC
Datia R. S. S., Hammerlindl J. K., Panchuk B., Pelcher L. E., Keller W. (1992). Modified binary plant transformation vectors with the wild-type gene encoding NPTII. Gene 122 383–384. 10.1016/0378-1119(92)90232-E PubMed DOI
Deeks M. J., Hussey P. J. (2003). Arp2/3 and ‘the shape of things to come’. Curr. Opin. Plant Biol. 6 561–567. 10.1016/j.pbi.2003.09.013 PubMed DOI
Deeks M. J., Kaloriti D., Davies B., Malhó R., Hussey P. J. (2004). Arabidopsis NAP1 is essential for Arp2/3-dependent trichome morphogenesis. Curr. Biol. 14 1410–1414. 10.1016/j.cub.2004.06.065 PubMed DOI
Djakovic S., Dyachok J., Burke M., Frank M. J., Smith L. G. (2006). BRICK1/HSPC300 functions with SCAR and the ARP2/3 complex to regulate epidermal cell shape in Arabidopsis. Development 133 1091–1100. 10.1242/dev.02280 PubMed DOI
Dobrev P. I., Vankova R. (2012). Quantification of abscisic Acid, cytokinin, and auxin content in salt-stressed plant tissues. Methods Mol. Biol. 913 251–261. 10.1007/978-1-61779-986-0_17 PubMed DOI
Dyachok J., Shao M. R., Vaughn K., Bowling A., Facette M., Djakovic S., et al. (2008). Plasma membrane-associated SCAR complex subunits promote cortical F-actin accumulation and normal growth characteristics in Arabidopsis roots. Mol. Plant 1 990–1006. 10.1093/mp/ssn059 PubMed DOI
Dyachok J., Zhu L., Liao F., He J., Huq E., Blancaflor E. B. (2011). SCAR mediates light-induced root elongation in Arabidopsis through photoreceptors and proteasomes. Plant Cell 23 3610–3626. 10.1105/tpc.111.088823 PubMed DOI PMC
El-Assal S. E. D., Le J., Basu D., Mallery E. L., Szymanski D. B. (2004). Distorted2 encodes an ARPC2 subunit of the putative Arabidopsis ARP2/3 complex. Plant J. 38 526–538. 10.1111/j.1365-313X.2004.02065.x PubMed DOI
Falconer M. M., Seagull R. W. (1985). Xylogenesis in tissue culture: Taxol effects on microtubule reorientation and lateral association in differentiating cells. Protoplasma 128 157–166. 10.1007/BF01276337 DOI
Feraru E., Feraru M. I., Kleine-Vehn J., Martiničre A., Mouille G., Vanneste S., et al. (2011). PIN polarity maintenance by the cell wall in Arabidopsis. Curr. Biol. 21 338–343. 10.1016/j.cub.2011.01.036 PubMed DOI
Friml J., Wiśniewska J., Benková E., Mendgen K., Palme K. (2002). Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415 806–809. 10.1038/415806a PubMed DOI
Gallavotti A. (2013). The role of auxin in shaping shoot architecture. J. Exp. Bot. 64 2593–2608. 10.1093/jxb/ert141 PubMed DOI
Gälweiler L., Guan C., Müller A., Wisman E., Mendgen K., Yephremov A., et al. (1998). Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282 2226–2230. 10.1126/science.282.5397.2226 PubMed DOI
Ganguly A., Park M., Kesawat M. S., Cho H.-T. (2014). Functional analysis of the hydrophilic loop in intracellular trafficking of Arabidopsis PIN-FORMED proteins. Plant Cell 26 1570–1585. 10.1105/tpc.113.118422 PubMed DOI PMC
Gao Y., Zhang Y., Zhang D., Dai X., Estelle M., Zhao Y. (2015). Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc. Natl. Acad. Sci. U.S.A. 112 2275–2280. 10.1073/pnas.1500365112 PubMed DOI PMC
Gardiner J. C., Taylor N. G., Turner S. R. (2003). Control of cellulose synthase complex localization in developing xylem. Plant Cell 15 1740–1748. 10.1105/tpc.012815 PubMed DOI PMC
Geldner N., Friml J., Stierhof Y. D., Jürgens G., Palme K. (2001). Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413 425–428. 10.1038/35096571 PubMed DOI
Hepler P. K., Fosket D. E. (1971). The role of microtubules in vessel member differentiation inColeus. Protoplasma 72 213–236. 10.1007/BF01279052 DOI
Hou G., Mohamalawari D. R., Blancaflor E. B. (2003). Enhanced gravitropism of roots with a disrupted cap. Plant Physiol. 131 1360–1373. 10.1104/pp.014423.amyloplasts PubMed DOI PMC
Jiang K., Sorefan K., Deeks M. J., Bevan M. W., Hussey P. J., Hetherington A. M. (2012). The ARP2/3 complex mediates guard cell actin reorganization and stomatal movement in Arabidopsis. Plant Cell 24 2031–2040. 10.1105/tpc.112.096263 PubMed DOI PMC
Klahre U., Chua N. H. (1999). The Arabidopsis ACTIN-RELATED PROTEIN 2 (AtARP2) promoter directs expression in xylem precursor cells and pollen. Plant Mol. Biol. 41 65–73. 10.1023/A:1006247600932 PubMed DOI
Kleine-Vehn J., Leitner J., Zwiewka M., Sauer M., Abas L., Luschnig C., et al. (2008a). Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc. Natl. Acad. Sci. U.S.A. 105 17812–17817. 10.1073/pnas.0808073105 PubMed DOI PMC
Kleine-Vehn J., Wabnik K., Martiničre A., Łangowski Ł., Willig K., Naramoto S., et al. (2011). Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane. Mol. Syst. Biol. 7:540. 10.1038/msb.2011.72 PubMed DOI PMC
Kleine-Vehn J., Wiśniewska J., Brewer P. B., Friml J., Dhonukshe P., Łangowski Ł. (2008b). Cellular and molecular requirements for polar PIN targeting and transcytosis in plants. Mol. Plant 1 1056–1066. 10.1093/mp/ssn062 PubMed DOI
Koltzscher M., Neumann C., Kö S., Gerke V. (2003). Ca2+ -dependent Binding and Activation of Dormant Ezrin by Dimeric S100P. Mol. Biol. Cell 14 2372–2384. 10.1091/mbc.E02 PubMed DOI PMC
Kramer E. M., Ackelsberg E. M. (2016). Do vacuoles obscure the evidence for auxin homeostasis? Mol. Plant 9 4–6. 10.1016/j.molp.2015.05.002 PubMed DOI
Kremers G.-J., Davidson M. W., Sell B. R., Baird M. A., Lavagnino Z., Ustione A., et al. (2016). Quantitative assessment of fluorescent proteins. Nat. Methods 13 557–562. 10.1038/nmeth.3891 PubMed DOI PMC
Krüger F., Schumacher K. (2018). Pumping up the volume - vacuole biogenesis in Arabidopsis thaliana. Semin. Cell Dev. Biol. 80 106–112. 10.1016/j.semcdb.2017.07.008 PubMed DOI
Lacek J., Retzer K., Luschnig C., Zažímalová E. (2017). “Polar auxin transport,” in eLS, (Chichester: John Wiley & Sons, Ltd; ), 1–11. 10.1002/9780470015902.a0020116.pub2 DOI
Lanza M., Garcia-Ponce B., Castrillo G., Catarecha P., Sauer M., Rodriguez-Serrano M., et al. (2012). Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants. Dev. Cell 22 1275–1285. 10.1016/j.devcel.2012.04.008 PubMed DOI
Laxmi A., Pan J., Morsy M., Chen R. (2008). Light plays an essential role in intracellular distribution of auxin efflux carrier PIN2 in Arabidopsis thaliana. PLoS One 3:e0001510. 10.1371/journal.pone.0001510 PubMed DOI PMC
Le J., El-Assal S. E.-D., Basu D., Saad M. E., Szymanski D. B. (2003). Requirements for Arabidopsis ATARP2 and ATARP3 during epidermal development. Curr. Biol. 13 1341–1347. 10.1016/S0960-9822(03)00493-7 PubMed DOI
Le J., Liu X.-G., Yang K.-Z., Chen X.-L., Zou J.-J., Wang H.-Z., et al. (2014). Auxin transport and activity regulate stomatal patterning and development. Nat. Commun. 5:3090. 10.1038/ncomms4090 PubMed DOI
Le J., Mallery E. L., Zhang C., Brankle S., Szymanski D. B. (2006). Arabidopsis BRICK1/HSPC300 is an essential WAVE-complex subunit that selectively stabilizes the Arp2/3 activator SCAR2. Curr. Biol. 16 895–901. 10.1016/j.cub.2006.03.061 PubMed DOI
Li H., Lin D., Dhonukshe P., Nagawa S., Chen D., Friml J., et al. (2011). Phosphorylation switch modulates the interdigitated pattern of PIN1 localization and cell expansion in Arabidopsis leaf epidermis. Cell Res. 21 970–978. 10.1038/cr.2011.49 PubMed DOI PMC
Li L.-J., Ren F., Gao X.-Q., Wei P.-C., Wang X.-C. (2013). The reorganization of actin filaments is required for vacuolar fusion of guard cells during stomatal opening in Arabidopsis. Plant Cell Environ. 36 484–497. 10.1111/j.1365-3040.2012.02592.x PubMed DOI
Li S., Blanchoin L., Yang Z., Lord E. M. (2003). The putative Arabidopsis arp2/3 complex controls leaf cell morphogenesis. Plant Physiol. 132 2034–2044. 10.1104/pp.103.028563.the PubMed DOI PMC
Löfke C., Dünser K., Scheuring D., Kleine-Vehn J. (2015). Auxin regulates SNARE-dependent vacuolar morphology restricting cell size. eLife 4:e05868. 10.7554/eLife.05868 PubMed DOI PMC
Mao G., Buschmann H., Doonan J. H., Lloyd C. W. (2006). The role of MAP65-1 in microtubule bundling during Zinnia tracheary element formation. J. Cell Sci. 119 753–758. 10.1242/jcs.02813 PubMed DOI
Mathur J., Mathur N., Kernebeck B., Hülskamp M. (2003a). Mutations in actin-related proteins 2 and 3 affect cell shape development in Arabidopsis. Plant Cell 15 1632–1645. 10.1105/tpc.011676 PubMed DOI PMC
Mathur J., Mathur N., Kirik V., Kernebeck B., Srinivas B. P., Hülskamp M. (2003b). Arabidopsis CROOKED encodes for the smallest subunit of the ARP2/3 complex and controls cell shape by region specific fine F-actin formation. Development 130 3137–3146. 10.1242/dev.00549 PubMed DOI
Mathur J., Spielhofer P., Kost B., Chua N. (1999). The actin cytoskeleton is required to elaborate and maintain spatial patterning during trichome cell morphogenesis in Arabidopsis thaliana. Development 126 5559–5568. PubMed
Nagawa S., Xu T., Lin D., Dhonukshe P., Zhang X., Friml J., et al. (2012). ROP GTPase-dependent actin microfilaments promote PIN1 polarization by localized inhibition of clathrin-dependent endocytosis. PLoS Biol. 10:e1001299. 10.1371/journal.pbio.1001299 PubMed DOI PMC
Nakayama N., Smith R. S., Mandel T., Robinson S., Kimura S., Boudaoud A., et al. (2012). Mechanical regulation of auxin-mediated growth. Curr. Biol. 22 1468–1476. 10.1016/j.cub.2012.06.050 PubMed DOI
Narusaka M., Shiraishi T., Iwabuchi M., Narusaka Y. (2010). The floral inoculating protocol: a simplified Arabidopsis thaliana transformation method modified from floral dipping. Plant Biotechnol. 27 349–351. 10.5511/plantbiotechnology.27.349 DOI
Nelson B. K., Cai X., Nebenführ A. (2007). A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51 1126–1136. 10.1111/j.1365-313X.2007.03212.x PubMed DOI
Oda Y., Fukuda H. (2012). Initiation of cell wall pattern by a Rho- and microtubule-driven symmetry breaking. Science 337 1333–1336. 10.1126/science.1222597 PubMed DOI
Oda Y., Fukuda H. (2013). Rho of Plant GTPase signaling regulates the behavior of Arabidopsis kinesin-13A to establish secondary cell wall patterns. Plant Cell 25 4439–4450. 10.1105/tpc.113.117853 PubMed DOI PMC
Oda Y., Iida Y., Kondo Y., Fukuda H. (2010). Wood cell-wall structure requires local 2D-microtubule disassembly by a novel plasma membrane-anchored protein. Curr. Biol. 20 1197–1202. 10.1016/j.cub.2010.05.038 PubMed DOI
Pénčík A., Simonovik B., Petersson S. V., Henyková E., Simon S., Greenham K., et al. (2013). Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid. Plant Cell 25 3858–3870. 10.1105/tpc.113.114421 PubMed DOI PMC
Pesquet E., Korolev A. V., Calder G., Lloyd C. W. (2010). The microtubule-associated protein AtMAP70-5 regulates secondary wall patterning in Arabidopsis wood cells. Curr. Biol. 20 744–749. 10.1016/j.cub.2010.02.057 PubMed DOI
Rahman A., Bannigan A., Sulaman W., Pechter P., Blancaflor E. B., Baskin T. I. (2007). Auxin, actin and growth of the Arabidopsis thaliana primary root. Plant J. 50 514–528. 10.1111/j.1365-313X.2007.03068.x PubMed DOI
Ramakers C., Ruijter J. M., Lekanne Deprez R. H., Moorman A. F. M. (2003). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 339 62–66. 10.1016/S0304-3940(02)01423-4 PubMed DOI
Saedler R., Zimmermann I., Mutondo M., Hülskamp M. (2004). The Arabidopsis KLUNKER gene controls cell shape changes and encodes the AtSRA1 homolog. Plant Mol. Biol. 56 775–782. 10.1007/s11103-004-4951-z PubMed DOI
Sahi V. P., Cifrová P., Garciá-González J., Kotannal Baby I., Mouillé G., Gineau E., et al. (2018). Arabidopsis thaliana plants lacking the ARP2/3 complex show defects in cell wall assembly and auxin distribution. Ann. Bot. 122 777–789. 10.1093/aob/mcx178 PubMed DOI PMC
Saini S., Sharma I., Kaur N., Pati P. K. (2013). Auxin: a master regulator in plant root development. Plant Cell Rep. 32 741–757. 10.1007/s00299-013-1430-5 PubMed DOI
Salanenka Y., Verstraeten I., Löfke C., Tabata K., Naramoto S., Glanc M., et al. (2018). Gibberellin DELLA signaling targets the retromer complex to redirect protein trafficking to the plasma membrane. Proc. Natl. Acad. Sci. U.S.A. 115 3716–3721. 10.1073/pnas.1721760115 PubMed DOI PMC
Sasaki T., Fukuda H., Oda Y. (2017). CORTICAL MICROTUBULE DISORDERING1 is required for secondary cell wall patterning in xylem vessels. Plant Cell 29 3123–3139. 10.1105/tpc.17.00663 PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9 676–682. 10.1038/nmeth.2019 PubMed DOI PMC
Schwab B., Mathur J., Saedler R., Schwarz H., Frey B., Scheidegger C., et al. (2003). Regulation of cell expansion by the DISTORTED genes in Arabidopsis thaliana: actin controls the spatial organization of microtubules. Mol. Genet. Genomics 269 350–360. 10.1007/s00438-003-0843-1 PubMed DOI
Shimada T., Takagi J., Ichino T., Shirakawa M., Hara-Nishimura I. (2018). Plant vacuoles. Annu. Rev. Plant Biol. 69 123–145. 10.1146/annurev-arplant-042817-040508 PubMed DOI
Shinoda H., Shannon M., Nagai T. (2018). Fluorescent proteins for investigating biological events in acidic environments. Int. J. Mol. Sci. 19:1548. 10.3390/ijms19061548 PubMed DOI PMC
Shirakawa M., Ueda H., Shimada T., Nishiyama C., Hara-Nishimura I. (2009). Vacuolar SNAREs function in the formation of the leaf vascular network by regulating auxin distribution. Plant Cell Physiol. 50 1319–1328. 10.1093/pcp/pcp076 PubMed DOI
Sugiyama Y., Nagashima Y., Wakazaki M., Sato M., Toyooka K., Fukuda H., et al. (2019). A Rho-actin signaling pathway shapes cell wall boundaries in Arabidopsis xylem vessels. Nat. Commun. 10 468. 10.1038/s41467-019-08396-7 PubMed DOI PMC
Teale W. D., Paponov I. A., Palme K. (2006). Auxin in action: signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 7 847–859. 10.1038/nrm2020 PubMed DOI
Viotti C., Krüger F., Krebs M., Neubert C., Fink F., Lupanga U., et al. (2013). The endoplasmic reticulum is the main membrane source for biogenesis of the lytic vacuole in Arabidopsis. Plant Cell 25 3434–3449. 10.1105/tpc.113.114827 PubMed DOI PMC
Vukašinović N., Oda Y., Pejchar P., Synek L., Pečenková T., Rawat A., et al. (2017). Microtubule-dependent targeting of the exocyst complex is necessary for xylem development in Arabidopsis. New Phytol. 213 1052–1067. 10.1111/nph.14267 PubMed DOI
Wang P., Richardson C., Hawes C., Hussey P. J. (2016). Arabidopsis NAP1 regulates the formation of autophagosomes. Curr. Biol. 26 2060–2069. 10.1016/j.cub.2016.06.008 PubMed DOI
Welch M. D., DePace A. H., Verma S., Iwamatsu A., Mitchison T. J. (1997). The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. J. Cell Biol. 138 375–384. 10.1083/jcb.138.2.375 PubMed DOI PMC
Wu T.-C., Belteton S. A., Pack J., Szymanski D. B., Umulis D. M. (2016). LobeFinder: a convex hull-based method for quantitative boundary analyses of lobed plant cells. Plant Physiol. 171 2331–2342. 10.1104/pp.15.00972 PubMed DOI PMC
Xu T., Dai N., Chen J., Nagawa S., Cao M., Li H., et al. (2014). Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science 343 1025–1028. 10.1126/science.1245125 PubMed DOI PMC
Xu T., Wen M., Nagawa S., Fu Y., Chen J.-G., Wu M.-J., et al. (2010). Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143 99–110. 10.1016/j.cell.2010.09.003 PubMed DOI PMC
Yamamoto K., Kiss J. Z. (2002). Disruption of the actin cytoskeleton results in the promotion of gravitropism in inflorescence stems and hypocotyls of Arabidopsis. Plant Physiol. 128 669–681. 10.1104/pp.010804 PubMed DOI PMC
Yanagisawa M., Desyatova A. S., Belteton S. A., Mallery E. L., Turner J. A., Szymanski D. B. (2015). Patterning mechanisms of cytoskeletal and cell wall systems during leaf trichome morphogenesis. Nat. Plants 1:15014. 10.1038/nplants.2015.14 PubMed DOI
Žádníková P., Petrasek J., Marhavy P., Raz V., Vandenbussche F., Ding Z., et al. (2010). Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development 137 607–617. 10.1242/dev.041277 PubMed DOI
Zhang C., Halsey L. E., Szymanski D. B. (2011). The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells. BMC Plant Biol. 11:27. 10.1186/1471-2229-11-27 PubMed DOI PMC
Zhang C., Hicks G. R., Raikhel N. V. (2014). Plant vacuole morphology and vacuolar trafficking. Front. Plant Sci. 5:476. 10.3389/fpls.2014.00476 PubMed DOI PMC
Zhang C., Mallery E. L., Szymanski D. B. (2013). ARP2/3 localization in Arabidopsis leaf pavement cells: a diversity of intracellular pools and cytoskeletal interactions. Front. Plant Sci. 4:238. 10.3389/fpls.2013.00238 PubMed DOI PMC
Zhao Y., Christensen S. K., Fankhauser C., Cashman J. R., Cohen J. D., Weigel D., et al. (2001). A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291 306–309. 10.1126/science.291.5502.306 PubMed DOI
ARP2/3 complex associates with peroxisomes to participate in pexophagy in plants
Editorial: Highlights of the 2nd D(dark grown)-root meeting
Bundling up the Role of the Actin Cytoskeleton in Primary Root Growth