Arp2/3 Complex Is Required for Auxin-Driven Cell Expansion Through Regulation of Auxin Transporter Homeostasis

. 2020 ; 11 () : 486. [epub] 20200428

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32425966

The Arp2/3 complex is an actin nucleator shown to be required throughout plant morphogenesis, contributing to processes such as cell expansion, tissue differentiation or cell wall assembly. A recent publication demonstrated that plants lacking functional Arp2/3 complex also present defects in auxin distribution and transport. This work shows that Arp2/3 complex subunits are predominantly expressed in the provasculature, although other plant tissues also show promoter activity (e.g., cotyledons, apical meristems, or root tip). Moreover, auxin can trigger subunit expression, indicating a role of this phytohormone in mediating the complex activity. Further investigation of the functional interaction between Arp2/3 complex and auxin signaling also reveals their cooperation in determining pavement cell shape, presumably through the role of Arp2/3 complex in the correct auxin carrier trafficking. Young seedlings of arpc5 mutants show increased auxin-triggered proteasomal degradation of DII-VENUS and altered PIN3 distribution, with higher levels of the protein in the vacuole. Closer observation of vacuolar morphology revealed the presence of a more fragmented vacuolar compartment when Arp2/3 function is abolished, hinting a generalized role of Arp2/3 complex in endomembrane function and protein trafficking.

Zobrazit více v PubMed

Abas L., Benjamins R., Malenica N., Paciorek T., Wiśniewska J., Wirniewska J., et al. (2006). Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat. Cell Biol. 8 249–256. 10.1038/ncb1369 PubMed DOI

Aloni R., Schwalm K., Langhans M., Ullrich C. I. (2003). Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta 216 841–853. 10.1007/s00425-002-0937-8 PubMed DOI

Armour W. J., Barton D. A., Law A. M. K., Overall R. L. (2015). Differential growth in periclinal and anticlinal walls during lobe formation in Arabidopsis cotyledon pavement cells. Plant Cell 27 2484–2500. 10.1105/tpc.114.126664 PubMed DOI PMC

Bachmair A., Zazimalova E., Petrasek J., Luschnig C., Korbei B., Leitner J., et al. (2012). Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth. Proc. Natl. Acad. Sci. U.S.A. 109 8322–8327. 10.1073/pnas.1200824109 PubMed DOI PMC

Bao C., Wang J., Zhang R., Zhang B., Zhang H., Zhou Y., et al. (2012). Arabidopsis VILLIN2 and VILLIN3 act redundantly in sclerenchyma development via bundling of actin filaments. Plant J. 71 962–975. 10.1111/j.1365-313X.2012.05044.x PubMed DOI

Baster P., Robert S., Kleine-Vehn J., Vanneste S., Kania U., Grunewald W., et al. (2013). SCFTIR1/AFB-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism. EMBO J. 32 260–274. 10.1038/emboj.2012.310 PubMed DOI PMC

Belteton S. A., Sawchuk M. G., Donohoe B. S., Scarpella E., Szymanski D. B. (2018). Reassessing the roles of PIN proteins and anticlinal microtubules during pavement cell morphogenesis. Plant Physiol. 176 432–449. 10.1104/pp.17.01554 PubMed DOI PMC

Braybrook S. A., Peaucelle A. (2013). Mechano-chemical aspects of organ formation in Arabidopsis thaliana: the relationship between Auxin and pectin. PLoS One 8:e0057813. 10.1371/journal.pone.0057813 PubMed DOI PMC

Brembu T., Winge P., Seem M., Bones A. M. (2004). NAPP and PIRP encode subunits of a putative wave regulatory protein complex involved in plant cell morphogenesis. Plant Cell 16 2335–2349. 10.1105/tpc.104.023739 PubMed DOI PMC

Brunoud G., Wells D. M., Oliva M., Larrieu A., Mirabet V., Burrow A. H., et al. (2012). A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482 103–106. 10.1038/nature10791 PubMed DOI

Cheng Y., Dai X., Zhao Y. (2007). Auxin synthesized by the YUCCA Flavin Monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19 2430–2439. 10.1105/tpc.107.053009 PubMed DOI PMC

Datia R. S. S., Hammerlindl J. K., Panchuk B., Pelcher L. E., Keller W. (1992). Modified binary plant transformation vectors with the wild-type gene encoding NPTII. Gene 122 383–384. 10.1016/0378-1119(92)90232-E PubMed DOI

Deeks M. J., Hussey P. J. (2003). Arp2/3 and ‘the shape of things to come’. Curr. Opin. Plant Biol. 6 561–567. 10.1016/j.pbi.2003.09.013 PubMed DOI

Deeks M. J., Kaloriti D., Davies B., Malhó R., Hussey P. J. (2004). Arabidopsis NAP1 is essential for Arp2/3-dependent trichome morphogenesis. Curr. Biol. 14 1410–1414. 10.1016/j.cub.2004.06.065 PubMed DOI

Djakovic S., Dyachok J., Burke M., Frank M. J., Smith L. G. (2006). BRICK1/HSPC300 functions with SCAR and the ARP2/3 complex to regulate epidermal cell shape in Arabidopsis. Development 133 1091–1100. 10.1242/dev.02280 PubMed DOI

Dobrev P. I., Vankova R. (2012). Quantification of abscisic Acid, cytokinin, and auxin content in salt-stressed plant tissues. Methods Mol. Biol. 913 251–261. 10.1007/978-1-61779-986-0_17 PubMed DOI

Dyachok J., Shao M. R., Vaughn K., Bowling A., Facette M., Djakovic S., et al. (2008). Plasma membrane-associated SCAR complex subunits promote cortical F-actin accumulation and normal growth characteristics in Arabidopsis roots. Mol. Plant 1 990–1006. 10.1093/mp/ssn059 PubMed DOI

Dyachok J., Zhu L., Liao F., He J., Huq E., Blancaflor E. B. (2011). SCAR mediates light-induced root elongation in Arabidopsis through photoreceptors and proteasomes. Plant Cell 23 3610–3626. 10.1105/tpc.111.088823 PubMed DOI PMC

El-Assal S. E. D., Le J., Basu D., Mallery E. L., Szymanski D. B. (2004). Distorted2 encodes an ARPC2 subunit of the putative Arabidopsis ARP2/3 complex. Plant J. 38 526–538. 10.1111/j.1365-313X.2004.02065.x PubMed DOI

Falconer M. M., Seagull R. W. (1985). Xylogenesis in tissue culture: Taxol effects on microtubule reorientation and lateral association in differentiating cells. Protoplasma 128 157–166. 10.1007/BF01276337 DOI

Feraru E., Feraru M. I., Kleine-Vehn J., Martiničre A., Mouille G., Vanneste S., et al. (2011). PIN polarity maintenance by the cell wall in Arabidopsis. Curr. Biol. 21 338–343. 10.1016/j.cub.2011.01.036 PubMed DOI

Friml J., Wiśniewska J., Benková E., Mendgen K., Palme K. (2002). Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415 806–809. 10.1038/415806a PubMed DOI

Gallavotti A. (2013). The role of auxin in shaping shoot architecture. J. Exp. Bot. 64 2593–2608. 10.1093/jxb/ert141 PubMed DOI

Gälweiler L., Guan C., Müller A., Wisman E., Mendgen K., Yephremov A., et al. (1998). Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282 2226–2230. 10.1126/science.282.5397.2226 PubMed DOI

Ganguly A., Park M., Kesawat M. S., Cho H.-T. (2014). Functional analysis of the hydrophilic loop in intracellular trafficking of Arabidopsis PIN-FORMED proteins. Plant Cell 26 1570–1585. 10.1105/tpc.113.118422 PubMed DOI PMC

Gao Y., Zhang Y., Zhang D., Dai X., Estelle M., Zhao Y. (2015). Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc. Natl. Acad. Sci. U.S.A. 112 2275–2280. 10.1073/pnas.1500365112 PubMed DOI PMC

Gardiner J. C., Taylor N. G., Turner S. R. (2003). Control of cellulose synthase complex localization in developing xylem. Plant Cell 15 1740–1748. 10.1105/tpc.012815 PubMed DOI PMC

Geldner N., Friml J., Stierhof Y. D., Jürgens G., Palme K. (2001). Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413 425–428. 10.1038/35096571 PubMed DOI

Hepler P. K., Fosket D. E. (1971). The role of microtubules in vessel member differentiation inColeus. Protoplasma 72 213–236. 10.1007/BF01279052 DOI

Hou G., Mohamalawari D. R., Blancaflor E. B. (2003). Enhanced gravitropism of roots with a disrupted cap. Plant Physiol. 131 1360–1373. 10.1104/pp.014423.amyloplasts PubMed DOI PMC

Jiang K., Sorefan K., Deeks M. J., Bevan M. W., Hussey P. J., Hetherington A. M. (2012). The ARP2/3 complex mediates guard cell actin reorganization and stomatal movement in Arabidopsis. Plant Cell 24 2031–2040. 10.1105/tpc.112.096263 PubMed DOI PMC

Klahre U., Chua N. H. (1999). The Arabidopsis ACTIN-RELATED PROTEIN 2 (AtARP2) promoter directs expression in xylem precursor cells and pollen. Plant Mol. Biol. 41 65–73. 10.1023/A:1006247600932 PubMed DOI

Kleine-Vehn J., Leitner J., Zwiewka M., Sauer M., Abas L., Luschnig C., et al. (2008a). Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc. Natl. Acad. Sci. U.S.A. 105 17812–17817. 10.1073/pnas.0808073105 PubMed DOI PMC

Kleine-Vehn J., Wabnik K., Martiničre A., Łangowski Ł., Willig K., Naramoto S., et al. (2011). Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane. Mol. Syst. Biol. 7:540. 10.1038/msb.2011.72 PubMed DOI PMC

Kleine-Vehn J., Wiśniewska J., Brewer P. B., Friml J., Dhonukshe P., Łangowski Ł. (2008b). Cellular and molecular requirements for polar PIN targeting and transcytosis in plants. Mol. Plant 1 1056–1066. 10.1093/mp/ssn062 PubMed DOI

Koltzscher M., Neumann C., Kö S., Gerke V. (2003). Ca2+ -dependent Binding and Activation of Dormant Ezrin by Dimeric S100P. Mol. Biol. Cell 14 2372–2384. 10.1091/mbc.E02 PubMed DOI PMC

Kramer E. M., Ackelsberg E. M. (2016). Do vacuoles obscure the evidence for auxin homeostasis? Mol. Plant 9 4–6. 10.1016/j.molp.2015.05.002 PubMed DOI

Kremers G.-J., Davidson M. W., Sell B. R., Baird M. A., Lavagnino Z., Ustione A., et al. (2016). Quantitative assessment of fluorescent proteins. Nat. Methods 13 557–562. 10.1038/nmeth.3891 PubMed DOI PMC

Krüger F., Schumacher K. (2018). Pumping up the volume - vacuole biogenesis in Arabidopsis thaliana. Semin. Cell Dev. Biol. 80 106–112. 10.1016/j.semcdb.2017.07.008 PubMed DOI

Lacek J., Retzer K., Luschnig C., Zažímalová E. (2017). “Polar auxin transport,” in eLS, (Chichester: John Wiley & Sons, Ltd; ), 1–11. 10.1002/9780470015902.a0020116.pub2 DOI

Lanza M., Garcia-Ponce B., Castrillo G., Catarecha P., Sauer M., Rodriguez-Serrano M., et al. (2012). Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants. Dev. Cell 22 1275–1285. 10.1016/j.devcel.2012.04.008 PubMed DOI

Laxmi A., Pan J., Morsy M., Chen R. (2008). Light plays an essential role in intracellular distribution of auxin efflux carrier PIN2 in Arabidopsis thaliana. PLoS One 3:e0001510. 10.1371/journal.pone.0001510 PubMed DOI PMC

Le J., El-Assal S. E.-D., Basu D., Saad M. E., Szymanski D. B. (2003). Requirements for Arabidopsis ATARP2 and ATARP3 during epidermal development. Curr. Biol. 13 1341–1347. 10.1016/S0960-9822(03)00493-7 PubMed DOI

Le J., Liu X.-G., Yang K.-Z., Chen X.-L., Zou J.-J., Wang H.-Z., et al. (2014). Auxin transport and activity regulate stomatal patterning and development. Nat. Commun. 5:3090. 10.1038/ncomms4090 PubMed DOI

Le J., Mallery E. L., Zhang C., Brankle S., Szymanski D. B. (2006). Arabidopsis BRICK1/HSPC300 is an essential WAVE-complex subunit that selectively stabilizes the Arp2/3 activator SCAR2. Curr. Biol. 16 895–901. 10.1016/j.cub.2006.03.061 PubMed DOI

Li H., Lin D., Dhonukshe P., Nagawa S., Chen D., Friml J., et al. (2011). Phosphorylation switch modulates the interdigitated pattern of PIN1 localization and cell expansion in Arabidopsis leaf epidermis. Cell Res. 21 970–978. 10.1038/cr.2011.49 PubMed DOI PMC

Li L.-J., Ren F., Gao X.-Q., Wei P.-C., Wang X.-C. (2013). The reorganization of actin filaments is required for vacuolar fusion of guard cells during stomatal opening in Arabidopsis. Plant Cell Environ. 36 484–497. 10.1111/j.1365-3040.2012.02592.x PubMed DOI

Li S., Blanchoin L., Yang Z., Lord E. M. (2003). The putative Arabidopsis arp2/3 complex controls leaf cell morphogenesis. Plant Physiol. 132 2034–2044. 10.1104/pp.103.028563.the PubMed DOI PMC

Löfke C., Dünser K., Scheuring D., Kleine-Vehn J. (2015). Auxin regulates SNARE-dependent vacuolar morphology restricting cell size. eLife 4:e05868. 10.7554/eLife.05868 PubMed DOI PMC

Mao G., Buschmann H., Doonan J. H., Lloyd C. W. (2006). The role of MAP65-1 in microtubule bundling during Zinnia tracheary element formation. J. Cell Sci. 119 753–758. 10.1242/jcs.02813 PubMed DOI

Mathur J., Mathur N., Kernebeck B., Hülskamp M. (2003a). Mutations in actin-related proteins 2 and 3 affect cell shape development in Arabidopsis. Plant Cell 15 1632–1645. 10.1105/tpc.011676 PubMed DOI PMC

Mathur J., Mathur N., Kirik V., Kernebeck B., Srinivas B. P., Hülskamp M. (2003b). Arabidopsis CROOKED encodes for the smallest subunit of the ARP2/3 complex and controls cell shape by region specific fine F-actin formation. Development 130 3137–3146. 10.1242/dev.00549 PubMed DOI

Mathur J., Spielhofer P., Kost B., Chua N. (1999). The actin cytoskeleton is required to elaborate and maintain spatial patterning during trichome cell morphogenesis in Arabidopsis thaliana. Development 126 5559–5568. PubMed

Nagawa S., Xu T., Lin D., Dhonukshe P., Zhang X., Friml J., et al. (2012). ROP GTPase-dependent actin microfilaments promote PIN1 polarization by localized inhibition of clathrin-dependent endocytosis. PLoS Biol. 10:e1001299. 10.1371/journal.pbio.1001299 PubMed DOI PMC

Nakayama N., Smith R. S., Mandel T., Robinson S., Kimura S., Boudaoud A., et al. (2012). Mechanical regulation of auxin-mediated growth. Curr. Biol. 22 1468–1476. 10.1016/j.cub.2012.06.050 PubMed DOI

Narusaka M., Shiraishi T., Iwabuchi M., Narusaka Y. (2010). The floral inoculating protocol: a simplified Arabidopsis thaliana transformation method modified from floral dipping. Plant Biotechnol. 27 349–351. 10.5511/plantbiotechnology.27.349 DOI

Nelson B. K., Cai X., Nebenführ A. (2007). A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51 1126–1136. 10.1111/j.1365-313X.2007.03212.x PubMed DOI

Oda Y., Fukuda H. (2012). Initiation of cell wall pattern by a Rho- and microtubule-driven symmetry breaking. Science 337 1333–1336. 10.1126/science.1222597 PubMed DOI

Oda Y., Fukuda H. (2013). Rho of Plant GTPase signaling regulates the behavior of Arabidopsis kinesin-13A to establish secondary cell wall patterns. Plant Cell 25 4439–4450. 10.1105/tpc.113.117853 PubMed DOI PMC

Oda Y., Iida Y., Kondo Y., Fukuda H. (2010). Wood cell-wall structure requires local 2D-microtubule disassembly by a novel plasma membrane-anchored protein. Curr. Biol. 20 1197–1202. 10.1016/j.cub.2010.05.038 PubMed DOI

Pénčík A., Simonovik B., Petersson S. V., Henyková E., Simon S., Greenham K., et al. (2013). Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid. Plant Cell 25 3858–3870. 10.1105/tpc.113.114421 PubMed DOI PMC

Pesquet E., Korolev A. V., Calder G., Lloyd C. W. (2010). The microtubule-associated protein AtMAP70-5 regulates secondary wall patterning in Arabidopsis wood cells. Curr. Biol. 20 744–749. 10.1016/j.cub.2010.02.057 PubMed DOI

Rahman A., Bannigan A., Sulaman W., Pechter P., Blancaflor E. B., Baskin T. I. (2007). Auxin, actin and growth of the Arabidopsis thaliana primary root. Plant J. 50 514–528. 10.1111/j.1365-313X.2007.03068.x PubMed DOI

Ramakers C., Ruijter J. M., Lekanne Deprez R. H., Moorman A. F. M. (2003). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 339 62–66. 10.1016/S0304-3940(02)01423-4 PubMed DOI

Saedler R., Zimmermann I., Mutondo M., Hülskamp M. (2004). The Arabidopsis KLUNKER gene controls cell shape changes and encodes the AtSRA1 homolog. Plant Mol. Biol. 56 775–782. 10.1007/s11103-004-4951-z PubMed DOI

Sahi V. P., Cifrová P., Garciá-González J., Kotannal Baby I., Mouillé G., Gineau E., et al. (2018). Arabidopsis thaliana plants lacking the ARP2/3 complex show defects in cell wall assembly and auxin distribution. Ann. Bot. 122 777–789. 10.1093/aob/mcx178 PubMed DOI PMC

Saini S., Sharma I., Kaur N., Pati P. K. (2013). Auxin: a master regulator in plant root development. Plant Cell Rep. 32 741–757. 10.1007/s00299-013-1430-5 PubMed DOI

Salanenka Y., Verstraeten I., Löfke C., Tabata K., Naramoto S., Glanc M., et al. (2018). Gibberellin DELLA signaling targets the retromer complex to redirect protein trafficking to the plasma membrane. Proc. Natl. Acad. Sci. U.S.A. 115 3716–3721. 10.1073/pnas.1721760115 PubMed DOI PMC

Sasaki T., Fukuda H., Oda Y. (2017). CORTICAL MICROTUBULE DISORDERING1 is required for secondary cell wall patterning in xylem vessels. Plant Cell 29 3123–3139. 10.1105/tpc.17.00663 PubMed DOI PMC

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9 676–682. 10.1038/nmeth.2019 PubMed DOI PMC

Schwab B., Mathur J., Saedler R., Schwarz H., Frey B., Scheidegger C., et al. (2003). Regulation of cell expansion by the DISTORTED genes in Arabidopsis thaliana: actin controls the spatial organization of microtubules. Mol. Genet. Genomics 269 350–360. 10.1007/s00438-003-0843-1 PubMed DOI

Shimada T., Takagi J., Ichino T., Shirakawa M., Hara-Nishimura I. (2018). Plant vacuoles. Annu. Rev. Plant Biol. 69 123–145. 10.1146/annurev-arplant-042817-040508 PubMed DOI

Shinoda H., Shannon M., Nagai T. (2018). Fluorescent proteins for investigating biological events in acidic environments. Int. J. Mol. Sci. 19:1548. 10.3390/ijms19061548 PubMed DOI PMC

Shirakawa M., Ueda H., Shimada T., Nishiyama C., Hara-Nishimura I. (2009). Vacuolar SNAREs function in the formation of the leaf vascular network by regulating auxin distribution. Plant Cell Physiol. 50 1319–1328. 10.1093/pcp/pcp076 PubMed DOI

Sugiyama Y., Nagashima Y., Wakazaki M., Sato M., Toyooka K., Fukuda H., et al. (2019). A Rho-actin signaling pathway shapes cell wall boundaries in Arabidopsis xylem vessels. Nat. Commun. 10 468. 10.1038/s41467-019-08396-7 PubMed DOI PMC

Teale W. D., Paponov I. A., Palme K. (2006). Auxin in action: signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 7 847–859. 10.1038/nrm2020 PubMed DOI

Viotti C., Krüger F., Krebs M., Neubert C., Fink F., Lupanga U., et al. (2013). The endoplasmic reticulum is the main membrane source for biogenesis of the lytic vacuole in Arabidopsis. Plant Cell 25 3434–3449. 10.1105/tpc.113.114827 PubMed DOI PMC

Vukašinović N., Oda Y., Pejchar P., Synek L., Pečenková T., Rawat A., et al. (2017). Microtubule-dependent targeting of the exocyst complex is necessary for xylem development in Arabidopsis. New Phytol. 213 1052–1067. 10.1111/nph.14267 PubMed DOI

Wang P., Richardson C., Hawes C., Hussey P. J. (2016). Arabidopsis NAP1 regulates the formation of autophagosomes. Curr. Biol. 26 2060–2069. 10.1016/j.cub.2016.06.008 PubMed DOI

Welch M. D., DePace A. H., Verma S., Iwamatsu A., Mitchison T. J. (1997). The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. J. Cell Biol. 138 375–384. 10.1083/jcb.138.2.375 PubMed DOI PMC

Wu T.-C., Belteton S. A., Pack J., Szymanski D. B., Umulis D. M. (2016). LobeFinder: a convex hull-based method for quantitative boundary analyses of lobed plant cells. Plant Physiol. 171 2331–2342. 10.1104/pp.15.00972 PubMed DOI PMC

Xu T., Dai N., Chen J., Nagawa S., Cao M., Li H., et al. (2014). Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science 343 1025–1028. 10.1126/science.1245125 PubMed DOI PMC

Xu T., Wen M., Nagawa S., Fu Y., Chen J.-G., Wu M.-J., et al. (2010). Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143 99–110. 10.1016/j.cell.2010.09.003 PubMed DOI PMC

Yamamoto K., Kiss J. Z. (2002). Disruption of the actin cytoskeleton results in the promotion of gravitropism in inflorescence stems and hypocotyls of Arabidopsis. Plant Physiol. 128 669–681. 10.1104/pp.010804 PubMed DOI PMC

Yanagisawa M., Desyatova A. S., Belteton S. A., Mallery E. L., Turner J. A., Szymanski D. B. (2015). Patterning mechanisms of cytoskeletal and cell wall systems during leaf trichome morphogenesis. Nat. Plants 1:15014. 10.1038/nplants.2015.14 PubMed DOI

Žádníková P., Petrasek J., Marhavy P., Raz V., Vandenbussche F., Ding Z., et al. (2010). Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development 137 607–617. 10.1242/dev.041277 PubMed DOI

Zhang C., Halsey L. E., Szymanski D. B. (2011). The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells. BMC Plant Biol. 11:27. 10.1186/1471-2229-11-27 PubMed DOI PMC

Zhang C., Hicks G. R., Raikhel N. V. (2014). Plant vacuole morphology and vacuolar trafficking. Front. Plant Sci. 5:476. 10.3389/fpls.2014.00476 PubMed DOI PMC

Zhang C., Mallery E. L., Szymanski D. B. (2013). ARP2/3 localization in Arabidopsis leaf pavement cells: a diversity of intracellular pools and cytoskeletal interactions. Front. Plant Sci. 4:238. 10.3389/fpls.2013.00238 PubMed DOI PMC

Zhao Y., Christensen S. K., Fankhauser C., Cashman J. R., Cohen J. D., Weigel D., et al. (2001). A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291 306–309. 10.1126/science.291.5502.306 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace