CRISPR-Cas9 Arabidopsis mutants of genes for ARPC1 and ARPC3 subunits of ARP2/3 complex reveal differential roles of complex subunits

. 2022 Oct 28 ; 12 (1) : 18205. [epub] 20221028

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36307477

Grantová podpora
19-10845S Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.1.05/4.1.00/16.0347 European Regional Development Fund
LM2018129 Czech Bio-imaging
e-INFRA LM2018140 e-Infrastruktura CZ

Odkazy

PubMed 36307477
PubMed Central PMC9616901
DOI 10.1038/s41598-022-22982-8
PII: 10.1038/s41598-022-22982-8
Knihovny.cz E-zdroje

Protein complex Arp2/3 has a conserved role in the nucleation of branched actin filaments. It is constituted of seven subunits, including actin-like subunits ARP2 and ARP3 plus five other subunits called Arp2/3 Complex Component 1 to 5, which are not related to actin. Knock-out plant mutants lacking individual plant ARP2/3 subunits have a typical phenotype of distorted trichomes, altered pavement cells shape and defects in cell adhesion. While knock-out mutant Arabidopsis plants for most ARP2/3 subunits have been characterized before, Arabidopsis plant mutants missing ARPC1 and ARPC3 subunits have not yet been described. Using CRISPR/Cas9, we generated knock-out mutants lacking ARPC1 and ARPC3 subunits. We confirmed that the loss of ARPC1 subunits results in the typical ARP2/3 mutant phenotype. However, the mutants lacking ARPC3 subunits resulted in plants with surprisingly different phenotypes. Our results suggest that plant ARP2/3 complex function in trichome shaping does not require ARPC3 subunit, while the fully assembled complex is necessary for the establishment of correct cell adhesion in the epidermis.

Erratum v

PubMed

Zobrazit více v PubMed

Machesky LM, Atkinson SJ, Ampe C, Vandekerckhove J, Pollard TD. Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J. Cell Biol. 1994;127:107–115. doi: 10.1083/jcb.127.1.107. PubMed DOI PMC

Veltman DM, Insall RH. WASP family proteins: Their evolution and its physiological implications. Mol. Biol. Cell. 2010;21:2880–2893. doi: 10.1091/mbc.e10-04-0372. PubMed DOI PMC

Mullins RD, Heuser JA, Pollard TD. The interaction of Arp2/3 complex with actin: Nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl. Acad. Sci. U. S. A. 1998;95:6181–6186. doi: 10.1073/pnas.95.11.6181. PubMed DOI PMC

Fäßler F, Dimchev G, Hodirnau V-V, Wan W, Schur FKM. Cryo-electron tomography structure of Arp2/3 complex in cells reveals new insights into the branch junction. Nat. Commun. 2020;11:6437. doi: 10.1038/s41467-020-20286-x. PubMed DOI PMC

Goley ED, Welch MD. The ARP2/3 complex: An actin nucleator comes of age. Nat. Rev. Mol. Cell Biol. 2006;7:713–726. doi: 10.1038/nrm2026. PubMed DOI

Galloni, C. PubMed PMC

Welch MD, DePace AH, Verma S, Iwamatsu A, Mitchison TJ. The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. J. Cell Biol. 1997;138:375–384. doi: 10.1083/jcb.138.2.375. PubMed DOI PMC

Winter DC, Choe EY, Li R. Genetic dissection of the budding yeast Arp2/3 complex: A comparison of the in vivo and structural roles of individual subunits. Proc. Natl. Acad. Sci. U.S.A. 1999;96:7288–7293. doi: 10.1073/pnas.96.13.7288. PubMed DOI PMC

Brawley SH, et al. Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta) Proc. Natl. Acad. Sci. U.S.A. 2017;114:E6361–E6370. doi: 10.1073/pnas.1703088114. PubMed DOI PMC

Gupta CM, Ambaru B, Bajaj R. Emerging functions of Actins and actin binding proteins in Trypanosomatids. Front. Cell Dev. Biol. 2020;8:587685. doi: 10.3389/fcell.2020.587685. PubMed DOI PMC

Chorev DS, Moscovitz O, Geiger B, Sharon M. Regulation of focal adhesion formation by a vinculin-Arp2/3 hybrid complex. Nat. Commun. 2014;5:3758. doi: 10.1038/ncomms4758. PubMed DOI

Yae K, et al. Sleeping Beauty transposon-based phenotypic analysis of mice: Lack of Arpc3 results in defective trophoblast outgrowth. Mol. Cell. Biol. 2006;26:6185–6196. doi: 10.1128/MCB.00018-06. PubMed DOI PMC

Sun S-C, et al. Actin nucleator Arp2/3 complex is essential for mouse preimplantation embryo development. Reprod. Fertil. Dev. 2013;25:617–623. doi: 10.1071/RD12011. PubMed DOI

Mishra M, Huang J, Balasubramanian MK. The yeast actin cytoskeleton. FEMS Microbiol. Rev. 2014;38:213–227. doi: 10.1111/1574-6976.12064. PubMed DOI

Mathur J, Mathur N, Kernebeck B, Hülskamp M. Mutations in actin-related proteins 2 and 3 affect cell shape development in Arabidopsis. Plant Cell. 2003;15:1632–1645. doi: 10.1105/tpc.011676. PubMed DOI PMC

Mathur J, et al. Arabidopsis CROOKED encodes for the smallest subunit of the ARP2/3 complex and controls cell shape by region specific fine F-actin formation. Development. 2003;130:3137–3146. doi: 10.1242/dev.00549. PubMed DOI

El-Din El-Assal S, Le J, Basu D, Mallery EL, Szymanski DB. DISTORTED2 encodes an ARPC2 subunit of the putative Arabidopsis ARP2/3 complex. Plant J. 2004;38(3):526–538. doi: 10.1111/j.1365-313X.2004.02065.x. PubMed DOI

Saedler R, et al. Actin control over microtubules suggested by DISTORTED2 encoding the Arabidopsis ARPC2 subunit homolog. Plant Cell Physiol. 2004;45:813–822. doi: 10.1093/pcp/pch103. PubMed DOI

Hossain MS, et al. Lotus japonicus ARPC1 is required for rhizobial infection. Plant Physiol. 2012;160:917–928. doi: 10.1104/pp.112.202572. PubMed DOI PMC

Kotchoni SO, et al. The association of the Arabidopsis actin-related protein2/3 complex with cell membranes is linked to its assembly status but not its activation. Plant Physiol. 2009;151:2095–2109. doi: 10.1104/pp.109.143859. PubMed DOI PMC

Hülskamp M, Misŕa S, Jürgens G. Genetic dissection of trichome cell development in Arabidopsis. Cell. 1994;76:555–566. doi: 10.1016/0092-8674(94)90118-X. PubMed DOI

El-Assal SE-D, Le J, Basu D, Mallery EL, Szymanski DB. Arabidopsis GNARLED encodes a NAP125 homolog that positively regulates ARP2/3. Curr. Biol. 2004;14:1405–1409. doi: 10.1016/j.cub.2004.06.062. PubMed DOI

Saedler R, Zimmermann I, Mutondo M, Hülskamp M. The Arabidopsis KLUNKER gene controls cell shape changes and encodes the AtSRA1 homolog. Plant Mol. Biol. 2004;56:775–782. doi: 10.1007/s11103-004-4951-z. PubMed DOI

Li S, Blanchoin L, Yang Z, Lord EM. The putative Arabidopsis arp2/3 complex controls leaf cell morphogenesis. Plant Physiol. 2003;132:2034–2044. doi: 10.1104/pp.103.028563. PubMed DOI PMC

Sahi VP, et al. Arabidopsis thaliana plants lacking the ARP2/3 complex show defects in cell wall assembly and auxin distribution. Ann. Bot. 2018;122:777–789. PubMed PMC

Yanagisawa M, et al. Patterning mechanisms of cytoskeletal and cell wall systems during leaf trichome morphogenesis. Nat Plants. 2015;1:15014. doi: 10.1038/nplants.2015.14. PubMed DOI

Yanagisawa M, Alonso JM, Szymanski DB. Microtubule-dependent confinement of a cell signaling and actin polymerization control module regulates polarized cell growth. Curr. Biol. 2018;28:2459–2466.e4. doi: 10.1016/j.cub.2018.05.076. PubMed DOI

Zhang C, Mallery EL, Szymanski DB. ARP2/3 localization in Arabidopsis leaf pavement cells: A diversity of intracellular pools and cytoskeletal interactions. Front. Plant Sci. 2013;4:238. doi: 10.3389/fpls.2013.00238. PubMed DOI PMC

Cifrová P, et al. Division of labor between two actin Nucleators—the Formin FH1 and the ARP2/3 Complex—in arabidopsis epidermal cell morphogenesis. Front. Plant Sci. 2020;11:148. doi: 10.3389/fpls.2020.00148. PubMed DOI PMC

Wang P, Richardson C, Hawes C, Hussey PJ. Arabidopsis NAP1 regulates the formation of Autophagosomes. Curr. Biol. 2016;26:2060–2069. doi: 10.1016/j.cub.2016.06.008. PubMed DOI

García-González J, et al. Arp2/3 complex is required for auxin-driven cell expansion through regulation of auxin transporter homeostasis. Front. Plant Sci. 2020;11:486. doi: 10.3389/fpls.2020.00486. PubMed DOI PMC

Martinek, J. PubMed

Menand B, Calder G, Dolan L. Both chloronemal and caulonemal cells expand by tip growth in the moss Physcomitrella patens. J. Exp. Bot. 2007;58:1843–1849. doi: 10.1093/jxb/erm047. PubMed DOI

Harries PA, Pan A, Quatrano RS. Actin-related protein2/3 complex component ARPC1 is required for proper cell morphogenesis and polarized cell growth in Physcomitrella patens. Plant Cell. 2005;17:2327–2339. doi: 10.1105/tpc.105.033266. PubMed DOI PMC

Finka A, et al. The knock-out of ARP3a gene affects F-actin cytoskeleton organization altering cellular tip growth, morphology and development in moss Physcomitrella patens. Cell Motil. Cytoskelet. 2008;65:769–784. doi: 10.1002/cm.20298. PubMed DOI

Perroud P-F, Quatrano RS. The role of ARPC4 in tip growth and alignment of the polar axis in filaments of Physcomitrella patens. Cell Motil. Cytoskelet. 2006;63:162–171. doi: 10.1002/cm.20114. PubMed DOI

Perroud P-F, Quatrano RS. BRICK1 is required for apical cell growth in filaments of the moss Physcomitrella patens but not for gametophore morphology. Plant Cell. 2008;20:411–422. doi: 10.1105/tpc.107.053256. PubMed DOI PMC

Xu Y, Huang S. Control of the Actin cytoskeleton within apical and subapical regions of pollen tubes. Front. Cell Dev. Biol. 2020;8:614821. doi: 10.3389/fcell.2020.614821. PubMed DOI PMC

Chin S, et al. Spatial and temporal localization of SPIRRIG and WAVE/SCAR reveal roles for these proteins in actin-mediated root hair development. Plant Cell. 2021;33:2131–2148. doi: 10.1093/plcell/koab115. PubMed DOI PMC

Van Gestel K, et al. Immunological evidence for the presence of plant homologues of the actin- related protein Arp3 in tobacco and maize: Subcellular localization to actin-enriched pit fields and emerging root hairs. Protoplasma. 2003;222:45–52. doi: 10.1007/s00709-003-0004-8. PubMed DOI

Denninger P, et al. Distinct RopGEFs successively drive polarization and outgrowth of root hairs. Curr. Biol. 2019;29:1854–1865.e5. doi: 10.1016/j.cub.2019.04.059. PubMed DOI

Yokota K, et al. Rearrangement of actin cytoskeleton mediates invasion of Lotus japonicus roots by Mesorhizobium loti. Plant Cell. 2009;21:267–284. doi: 10.1105/tpc.108.063693. PubMed DOI PMC

Qiu L, et al. SCARN a novel class of SCAR protein that is required for root-hair infection during legume nodulation. PLoS Genet. 2015;11:e1005623. doi: 10.1371/journal.pgen.1005623. PubMed DOI PMC

Miyahara A, et al. Conservation in function of a SCAR/WAVE component during infection thread and root hair growth in Medicago truncatula. Mol. Plant Microbe Interact. 2010;23:1553–1562. doi: 10.1094/MPMI-06-10-0144. PubMed DOI

Gavrin A, Jansen V, Ivanov S, Bisseling T, Fedorova E. ARP2/3-mediated actin nucleation associated with Symbiosome membrane is essential for the development of Symbiosomes in infected cells of Medicago Truncatula root nodules. Mol. Plant Microbe Interact. 2015;28:605–614. doi: 10.1094/MPMI-12-14-0402-R. PubMed DOI

Isner J-C, et al. Actin filament reorganisation controlled by the SCAR/WAVE complex mediates stomatal response to darkness. New Phytol. 2017;215:1059–1067. doi: 10.1111/nph.14655. PubMed DOI PMC

Jiang K, et al. The ARP2/3 complex mediates guard cell actin reorganization and stomatal movement in Arabidopsis. Plant Cell. 2012;24:2031–2040. doi: 10.1105/tpc.112.096263. PubMed DOI PMC

Sun G, et al. The tomato Arp2/3 complex is required for resistance to the powdery mildew fungus Oidium neolycopersici. Plant Cell Environ. 2019;42:2664–2680. doi: 10.1111/pce.13569. PubMed DOI PMC

Qi T, et al. TaARPC3, contributes to wheat resistance against the stripe rust fungus. Front. Plant Sci. 2017;8:1245. doi: 10.3389/fpls.2017.01245. PubMed DOI PMC

Badet T, et al. Expression polymorphism at the ARPC4 locus links the actin cytoskeleton with quantitative disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana. New Phytol. 2019;222:480–496. doi: 10.1111/nph.15580. PubMed DOI

Xing H-L, et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol. 2014;14:327. doi: 10.1186/s12870-014-0327-y. PubMed DOI PMC

Lei Y, et al. CRISPR-P: A web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol. Plant. 2014;7:1494–1496. doi: 10.1093/mp/ssu044. PubMed DOI

Zhang X, Henriques R, Lin S-S, Niu Q-W, Chua N-H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 2006;1:641–646. doi: 10.1038/nprot.2006.97. PubMed DOI

Vernet T, Dignard D, Thomas DY. A family of yeast expression vectors containing the phage f1 intergenic region1. Gene. 1987;52:225–233. doi: 10.1016/0378-1119(87)90049-7. PubMed DOI

Clontech Laboratories, Inc.

Ganger MT, Dietz GD, Ewing SJ. A common base method for analysis of qPCR data and the application of simple blocking in qPCR experiments. BMC Bioinf. 2017;18:534. doi: 10.1186/s12859-017-1949-5. PubMed DOI PMC

Schindelin J, et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Datla RS, Hammerlindl JK, Panchuk B, Pelcher LE, Keller W. Modified binary plant transformation vectors with the wild-type gene encoding NPTII. Gene. 1992;122:383–384. doi: 10.1016/0378-1119(92)90232-E. PubMed DOI

Gournier H, Goley ED, Niederstrasser H, Trinh T, Welch MD. Reconstitution of human Arp2/3 complex reveals critical roles of individual subunits in complex structure and activity. Mol. Cell. 2001;8:1041–1052. doi: 10.1016/S1097-2765(01)00393-8. PubMed DOI

Suraneni P, et al. The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration. J. Cell Biol. 2012;197:239–251. doi: 10.1083/jcb.201112113. PubMed DOI PMC

Cabrera R, Suo J, Young E, Chang EC. Schizosaccharomyces pombe Arc3 is a conserved subunit of the Arp2/3 complex required for polarity, actin organization, and endocytosis. Yeast. 2011;28:495–503. doi: 10.1002/yea.1853. PubMed DOI PMC

Li Y, Sorefan K, Hemmann G, Bevan MW. Arabidopsis NAP and PIR regulate actin-based cell morphogenesis and multiple developmental processes. Plant Physiol. 2004;136:3616–3627. doi: 10.1104/pp.104.053173. PubMed DOI PMC

Szymanski DB. Breaking the WAVE complex: The point of Arabidopsis trichomes. Curr. Opin. Plant Biol. 2005;8:103–112. doi: 10.1016/j.pbi.2004.11.004. PubMed DOI

Balcer HI, Daugherty-Clarke K, Goode BL. The p40/ARPC1 subunit of Arp2/3 complex performs multiple essential roles in WASp-regulated actin nucleation. J. Biol. Chem. 2010;285:8481–8491. doi: 10.1074/jbc.M109.054957. PubMed DOI PMC

Pan F, Egile C, Lipkin T, Li R. ARPC1/Arc40 mediates the interaction of the actin-related protein 2 and 3 complex with Wiskott-Aldrich syndrome protein family activators. J. Biol. Chem. 2004;279:54629–54636. doi: 10.1074/jbc.M402357200. PubMed DOI

Basu D, et al. DISTORTED3/SCAR2 is a putative arabidopsis WAVE complex subunit that activates the Arp2/3 complex and is required for epidermal morphogenesis. Plant Cell. 2005;17:502–524. doi: 10.1105/tpc.104.027987. PubMed DOI PMC

Uhrig JF, et al. The role of Arabidopsis SCAR genes in ARP2-ARP3-dependent cell morphogenesis. Development. 2007;134:967–977. doi: 10.1242/dev.02792. PubMed DOI

Yanagisawa M, Zhang C, Szymanski DB. ARP2/3-dependent growth in the plant kingdom: SCARs for life. Front. Plant Sci. 2013;4:166. doi: 10.3389/fpls.2013.00166. PubMed DOI PMC

Schwarzerova, K. Divergent: The unique role of the ARPC3 subunit in the plant ARP2/3 complex. (2022). 10.17605/OSF.IO/XNSQF.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...