-
Je něco špatně v tomto záznamu ?
Semi-parametric arterial input functions for quantitative dynamic contrast enhanced magnetic resonance imaging in mice
T. Taxt, RK. Reed, T. Pavlin, CB. Rygh, E. Andersen, R. Jiřík,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- algoritmy MeSH
- arterie patologie MeSH
- kontrastní látky chemie farmakokinetika MeSH
- magnetická rezonanční tomografie * MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- perfuze MeSH
- počítačová simulace MeSH
- počítačové zpracování obrazu * MeSH
- reprodukovatelnost výsledků MeSH
- vylepšení obrazu * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVE: An extension of single- and multi-channel blind deconvolution is presented to improve the estimation of the arterial input function (AIF) in quantitative dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). METHODS: The Lucy-Richardson expectation-maximization algorithm is used to obtain estimates of the AIF and the tissue residue function (TRF). In the first part of the algorithm, nonparametric estimates of the AIF and TRF are obtained. In the second part, the decaying part of the AIF is approximated by three decaying exponential functions with the same delay, giving an almost noise free semi-parametric AIF. Simultaneously, the TRF is approximated using the adiabatic approximation of the Johnson-Wilson (aaJW) pharmacokinetic model. RESULTS: In simulations and tests on real data, use of this AIF gave perfusion values close to those obtained with the corresponding previously published nonparametric AIF, and are more noise robust. CONCLUSION: When used subsequently in voxelwise perfusion analysis, these semi-parametric AIFs should give more correct perfusion analysis maps less affected by recording noise than the corresponding nonparametric AIFs, and AIFs obtained from arteries. SIGNIFICANCE: This paper presents a method to increase the noise robustness in the estimation of the perfusion parameter values in DCE-MRI.
Centre for Cancer Biomarkers University of Bergen Jonas Lies vei 87 Bergen N 5021 Norway
Czech Academy of Sciences Inst of Scientific Instruments Královopolská 147 Brno 61264 Czech Republic
Dept of Biomedicine University of Bergen Jonas Lies vei 91 Bergen N 5020 Norway
Dept of Clinical Engineering Haukeland University Hospital Jonas Lies vei 83 Bergen N 5020 Norway
Dept of Radiology Haukeland University Hospital Jonas Lies vei 83 Bergen N 5020 Norway
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18033632
- 003
- CZ-PrNML
- 005
- 20181016120230.0
- 007
- ta
- 008
- 181008s2018 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.mri.2017.10.004 $2 doi
- 035 __
- $a (PubMed)29066294
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Taxt, Torfinn $u Dept. of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen N-5020, Norway; Dept. of Radiology, Haukeland University Hospital, Jonas Lies vei 83, Bergen N-5020, Norway.
- 245 10
- $a Semi-parametric arterial input functions for quantitative dynamic contrast enhanced magnetic resonance imaging in mice / $c T. Taxt, RK. Reed, T. Pavlin, CB. Rygh, E. Andersen, R. Jiřík,
- 520 9_
- $a OBJECTIVE: An extension of single- and multi-channel blind deconvolution is presented to improve the estimation of the arterial input function (AIF) in quantitative dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). METHODS: The Lucy-Richardson expectation-maximization algorithm is used to obtain estimates of the AIF and the tissue residue function (TRF). In the first part of the algorithm, nonparametric estimates of the AIF and TRF are obtained. In the second part, the decaying part of the AIF is approximated by three decaying exponential functions with the same delay, giving an almost noise free semi-parametric AIF. Simultaneously, the TRF is approximated using the adiabatic approximation of the Johnson-Wilson (aaJW) pharmacokinetic model. RESULTS: In simulations and tests on real data, use of this AIF gave perfusion values close to those obtained with the corresponding previously published nonparametric AIF, and are more noise robust. CONCLUSION: When used subsequently in voxelwise perfusion analysis, these semi-parametric AIFs should give more correct perfusion analysis maps less affected by recording noise than the corresponding nonparametric AIFs, and AIFs obtained from arteries. SIGNIFICANCE: This paper presents a method to increase the noise robustness in the estimation of the perfusion parameter values in DCE-MRI.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a arterie $x patologie $7 D001158
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a kontrastní látky $x chemie $x farmakokinetika $7 D003287
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 12
- $a vylepšení obrazu $7 D007089
- 650 12
- $a počítačové zpracování obrazu $7 D007091
- 650 12
- $a magnetická rezonanční tomografie $7 D008279
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a myši inbrední C57BL $7 D008810
- 650 _2
- $a perfuze $7 D010477
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Reed, Rolf K $u Dept. of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen N-5020, Norway; Centre for Cancer Biomarkers (CCBIO), University of Bergen, Jonas Lies vei 87, Bergen N-5021, Norway.
- 700 1_
- $a Pavlin, Tina $u Dept. of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen N-5020, Norway; Dept. of Radiology, Haukeland University Hospital, Jonas Lies vei 83, Bergen N-5020, Norway.
- 700 1_
- $a Rygh, Cecilie Brekke $u Dept. of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen N-5020, Norway.
- 700 1_
- $a Andersen, Erling $u Dept. of Clinical Engineering, Haukeland University Hospital, Jonas Lies vei 83, Bergen N-5020, Norway.
- 700 1_
- $a Jiřík, Radovan $u Czech Academy of Sciences, Inst. of Scientific Instruments, Královopolská 147, Brno 61264, Czech Republic. Electronic address: jirik@isibrno.cz.
- 773 0_
- $w MED00003171 $t Magnetic resonance imaging $x 1873-5894 $g Roč. 46, č. - (2018), s. 10-20
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29066294 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20181008 $b ABA008
- 991 __
- $a 20181016120727 $b ABA008
- 999 __
- $a ok $b bmc $g 1339533 $s 1030626
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 46 $c - $d 10-20 $e 20171021 $i 1873-5894 $m Magnetic resonance imaging $n Magn Reson Imaging $x MED00003171
- LZP __
- $a Pubmed-20181008