Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Carotenoid-to-bacteriochlorophyll energy transfer through vibronic coupling in LH2 from Phaeosprillum molischianum

E. Thyrhaug, CN. Lincoln, F. Branchi, G. Cerullo, V. Perlík, F. Šanda, H. Lokstein, J. Hauer,

. 2018 ; 135 (1-3) : 45-54. [pub] 20170518

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18033893
E-zdroje Online Plný text

NLK ProQuest Central od 1997-01-01 do Před 1 rokem
Medline Complete (EBSCOhost) od 2011-01-01 do Před 1 rokem
Health & Medicine (ProQuest) od 1997-01-01 do Před 1 rokem

The peripheral light-harvesting antenna complex (LH2) of purple photosynthetic bacteria is an ideal testing ground for models of structure-function relationships due to its well-determined molecular structure and ultrafast energy deactivation. It has been the target for numerous studies in both theory and ultrafast spectroscopy; nevertheless, certain aspects of the convoluted relaxation network of LH2 lack a satisfactory explanation by conventional theories. For example, the initial carotenoid-to-bacteriochlorophyll energy transfer step necessary on visible light excitation was long considered to follow the Förster mechanism, even though transfer times as short as 40 femtoseconds (fs) have been observed. Such transfer times are hard to accommodate by Förster theory, as the moderate coupling strengths found in LH2 suggest much slower transfer within this framework. In this study, we investigate LH2 from Phaeospirillum (Ph.) molischianum in two types of transient absorption experiments-with narrowband pump and white-light probe resulting in 100 fs time resolution, and with degenerate broadband 10 fs pump and probe pulses. With regard to the split Qx band in this system, we show that vibronically mediated transfer explains both the ultrafast carotenoid-to-B850 transfer, and the almost complete lack of transfer to B800. These results are beyond Förster theory, which predicts an almost equal partition between the two channels.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18033893
003      
CZ-PrNML
005      
20181008122214.0
007      
ta
008      
181008s2018 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s11120-017-0398-3 $2 doi
035    __
$a (PubMed)28523607
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Thyrhaug, Erling $u Photonics Institute, TU Wien, Gußhausstraße 27, 1040, Vienna, Austria.
245    10
$a Carotenoid-to-bacteriochlorophyll energy transfer through vibronic coupling in LH2 from Phaeosprillum molischianum / $c E. Thyrhaug, CN. Lincoln, F. Branchi, G. Cerullo, V. Perlík, F. Šanda, H. Lokstein, J. Hauer,
520    9_
$a The peripheral light-harvesting antenna complex (LH2) of purple photosynthetic bacteria is an ideal testing ground for models of structure-function relationships due to its well-determined molecular structure and ultrafast energy deactivation. It has been the target for numerous studies in both theory and ultrafast spectroscopy; nevertheless, certain aspects of the convoluted relaxation network of LH2 lack a satisfactory explanation by conventional theories. For example, the initial carotenoid-to-bacteriochlorophyll energy transfer step necessary on visible light excitation was long considered to follow the Förster mechanism, even though transfer times as short as 40 femtoseconds (fs) have been observed. Such transfer times are hard to accommodate by Förster theory, as the moderate coupling strengths found in LH2 suggest much slower transfer within this framework. In this study, we investigate LH2 from Phaeospirillum (Ph.) molischianum in two types of transient absorption experiments-with narrowband pump and white-light probe resulting in 100 fs time resolution, and with degenerate broadband 10 fs pump and probe pulses. With regard to the split Qx band in this system, we show that vibronically mediated transfer explains both the ultrafast carotenoid-to-B850 transfer, and the almost complete lack of transfer to B800. These results are beyond Förster theory, which predicts an almost equal partition between the two channels.
650    _2
$a bakteriochlorofyly $x metabolismus $7 D001429
650    _2
$a karotenoidy $x metabolismus $7 D002338
650    12
$a přenos energie $7 D004735
650    _2
$a Fourierova analýza $7 D005583
650    _2
$a lasery $7 D007834
650    _2
$a světlosběrné proteinové komplexy $x metabolismus $7 D045342
650    _2
$a Proteobacteria $x metabolismus $7 D020560
650    _2
$a spektrofotometrie ultrafialová $7 D013056
650    _2
$a časové faktory $7 D013997
655    _2
$a časopisecké články $7 D016428
700    1_
$a Lincoln, Craig N $u Photonics Institute, TU Wien, Gußhausstraße 27, 1040, Vienna, Austria.
700    1_
$a Branchi, Federico $u Dipartimento di Fisica, IFN-CNR, Politecnico di Milano, Piazza L. da Vinci, 32, 20133, Milan, Italy.
700    1_
$a Cerullo, Giulio $u Dipartimento di Fisica, IFN-CNR, Politecnico di Milano, Piazza L. da Vinci, 32, 20133, Milan, Italy.
700    1_
$a Perlík, Václav $u Faculty of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, 12116, Prague, Czech Republic.
700    1_
$a Šanda, František $u Faculty of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, 12116, Prague, Czech Republic.
700    1_
$a Lokstein, Heiko $u Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, 12116, Praha 2, Czech Republic.
700    1_
$a Hauer, Jürgen $u Photonics Institute, TU Wien, Gußhausstraße 27, 1040, Vienna, Austria. juergen.hauer@tuwien.ac.at.
773    0_
$w MED00006488 $t Photosynthesis research $x 1573-5079 $g Roč. 135, č. 1-3 (2018), s. 45-54
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28523607 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20181008 $b ABA008
991    __
$a 20181008122701 $b ABA008
999    __
$a ok $b bmc $g 1339642 $s 1030887
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 135 $c 1-3 $d 45-54 $e 20170518 $i 1573-5079 $m Photosynthesis research $n Photosynth Res $x MED00006488
LZP    __
$a Pubmed-20181008

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...