-
Je něco špatně v tomto záznamu ?
Carotenoid-to-bacteriochlorophyll energy transfer through vibronic coupling in LH2 from Phaeosprillum molischianum
E. Thyrhaug, CN. Lincoln, F. Branchi, G. Cerullo, V. Perlík, F. Šanda, H. Lokstein, J. Hauer,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články
NLK
ProQuest Central
od 1997-01-01 do Před 1 rokem
Medline Complete (EBSCOhost)
od 2011-01-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 1997-01-01 do Před 1 rokem
- MeSH
- bakteriochlorofyly metabolismus MeSH
- časové faktory MeSH
- Fourierova analýza MeSH
- karotenoidy metabolismus MeSH
- lasery MeSH
- přenos energie * MeSH
- Proteobacteria metabolismus MeSH
- spektrofotometrie ultrafialová MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
The peripheral light-harvesting antenna complex (LH2) of purple photosynthetic bacteria is an ideal testing ground for models of structure-function relationships due to its well-determined molecular structure and ultrafast energy deactivation. It has been the target for numerous studies in both theory and ultrafast spectroscopy; nevertheless, certain aspects of the convoluted relaxation network of LH2 lack a satisfactory explanation by conventional theories. For example, the initial carotenoid-to-bacteriochlorophyll energy transfer step necessary on visible light excitation was long considered to follow the Förster mechanism, even though transfer times as short as 40 femtoseconds (fs) have been observed. Such transfer times are hard to accommodate by Förster theory, as the moderate coupling strengths found in LH2 suggest much slower transfer within this framework. In this study, we investigate LH2 from Phaeospirillum (Ph.) molischianum in two types of transient absorption experiments-with narrowband pump and white-light probe resulting in 100 fs time resolution, and with degenerate broadband 10 fs pump and probe pulses. With regard to the split Qx band in this system, we show that vibronically mediated transfer explains both the ultrafast carotenoid-to-B850 transfer, and the almost complete lack of transfer to B800. These results are beyond Förster theory, which predicts an almost equal partition between the two channels.
Dipartimento di Fisica IFN CNR Politecnico di Milano Piazza L da Vinci 32 20133 Milan Italy
Photonics Institute TU Wien Gußhausstraße 27 1040 Vienna Austria
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18033893
- 003
- CZ-PrNML
- 005
- 20181008122214.0
- 007
- ta
- 008
- 181008s2018 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s11120-017-0398-3 $2 doi
- 035 __
- $a (PubMed)28523607
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Thyrhaug, Erling $u Photonics Institute, TU Wien, Gußhausstraße 27, 1040, Vienna, Austria.
- 245 10
- $a Carotenoid-to-bacteriochlorophyll energy transfer through vibronic coupling in LH2 from Phaeosprillum molischianum / $c E. Thyrhaug, CN. Lincoln, F. Branchi, G. Cerullo, V. Perlík, F. Šanda, H. Lokstein, J. Hauer,
- 520 9_
- $a The peripheral light-harvesting antenna complex (LH2) of purple photosynthetic bacteria is an ideal testing ground for models of structure-function relationships due to its well-determined molecular structure and ultrafast energy deactivation. It has been the target for numerous studies in both theory and ultrafast spectroscopy; nevertheless, certain aspects of the convoluted relaxation network of LH2 lack a satisfactory explanation by conventional theories. For example, the initial carotenoid-to-bacteriochlorophyll energy transfer step necessary on visible light excitation was long considered to follow the Förster mechanism, even though transfer times as short as 40 femtoseconds (fs) have been observed. Such transfer times are hard to accommodate by Förster theory, as the moderate coupling strengths found in LH2 suggest much slower transfer within this framework. In this study, we investigate LH2 from Phaeospirillum (Ph.) molischianum in two types of transient absorption experiments-with narrowband pump and white-light probe resulting in 100 fs time resolution, and with degenerate broadband 10 fs pump and probe pulses. With regard to the split Qx band in this system, we show that vibronically mediated transfer explains both the ultrafast carotenoid-to-B850 transfer, and the almost complete lack of transfer to B800. These results are beyond Förster theory, which predicts an almost equal partition between the two channels.
- 650 _2
- $a bakteriochlorofyly $x metabolismus $7 D001429
- 650 _2
- $a karotenoidy $x metabolismus $7 D002338
- 650 12
- $a přenos energie $7 D004735
- 650 _2
- $a Fourierova analýza $7 D005583
- 650 _2
- $a lasery $7 D007834
- 650 _2
- $a světlosběrné proteinové komplexy $x metabolismus $7 D045342
- 650 _2
- $a Proteobacteria $x metabolismus $7 D020560
- 650 _2
- $a spektrofotometrie ultrafialová $7 D013056
- 650 _2
- $a časové faktory $7 D013997
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Lincoln, Craig N $u Photonics Institute, TU Wien, Gußhausstraße 27, 1040, Vienna, Austria.
- 700 1_
- $a Branchi, Federico $u Dipartimento di Fisica, IFN-CNR, Politecnico di Milano, Piazza L. da Vinci, 32, 20133, Milan, Italy.
- 700 1_
- $a Cerullo, Giulio $u Dipartimento di Fisica, IFN-CNR, Politecnico di Milano, Piazza L. da Vinci, 32, 20133, Milan, Italy.
- 700 1_
- $a Perlík, Václav $u Faculty of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, 12116, Prague, Czech Republic.
- 700 1_
- $a Šanda, František $u Faculty of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, 12116, Prague, Czech Republic.
- 700 1_
- $a Lokstein, Heiko $u Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, 12116, Praha 2, Czech Republic.
- 700 1_
- $a Hauer, Jürgen $u Photonics Institute, TU Wien, Gußhausstraße 27, 1040, Vienna, Austria. juergen.hauer@tuwien.ac.at.
- 773 0_
- $w MED00006488 $t Photosynthesis research $x 1573-5079 $g Roč. 135, č. 1-3 (2018), s. 45-54
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28523607 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20181008 $b ABA008
- 991 __
- $a 20181008122701 $b ABA008
- 999 __
- $a ok $b bmc $g 1339642 $s 1030887
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 135 $c 1-3 $d 45-54 $e 20170518 $i 1573-5079 $m Photosynthesis research $n Photosynth Res $x MED00006488
- LZP __
- $a Pubmed-20181008