-
Je něco špatně v tomto záznamu ?
Cold tolerance is unaffected by oxygen availability despite changes in anaerobic metabolism
L. Boardman, JG. Sørensen, V. Koštál, P. Šimek, JS. Terblanche,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
Nature Open Access
od 2011-12-01
PubMed Central
od 2011
Europe PubMed Central
od 2011
ProQuest Central
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Health & Medicine (ProQuest)
od 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2011
PubMed
27619175
DOI
10.1038/srep32856
Knihovny.cz E-zdroje
- MeSH
- aklimatizace fyziologie MeSH
- aminokyseliny metabolismus MeSH
- anaerobióza fyziologie MeSH
- bazální metabolismus fyziologie MeSH
- homeostáza fyziologie MeSH
- kyslík metabolismus MeSH
- larva fyziologie MeSH
- metabolomika MeSH
- můry fyziologie MeSH
- nízká teplota MeSH
- reakce na chladový šok fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Insect cold tolerance depends on their ability to withstand or repair perturbations in cellular homeostasis caused by low temperature stress. Decreased oxygen availability (hypoxia) can interact with low temperature tolerance, often improving insect survival. One mechanism proposed for such responses is that whole-animal cold tolerance is set by a transition to anaerobic metabolism. Here, we provide a test of this hypothesis in an insect model system (Thaumatotibia leucotreta) by experimental manipulation of oxygen availability while measuring metabolic rate, critical thermal minimum (CTmin), supercooling point and changes in 43 metabolites in moth larvae at three key timepoints (before, during and after chill coma). Furthermore, we determined the critical oxygen partial pressure below which metabolic rate was suppressed (c. 4.5 kPa). Results showed that altering oxygen availability did not affect (non-lethal) CTmin nor (lethal) supercooling point. Metabolomic profiling revealed the upregulation of anaerobic metabolites and alterations in concentrations of citric acid cycle intermediates during and after chill coma exposure. Hypoxia exacerbated the anaerobic metabolite responses induced by low temperatures. These results suggest that cold tolerance of T. leucotreta larvae is not set by oxygen limitation, and that anaerobic metabolism in these larvae may contribute to their ability to survive in necrotic fruit.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18034088
- 003
- CZ-PrNML
- 005
- 20181009110414.0
- 007
- ta
- 008
- 181008s2016 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/srep32856 $2 doi
- 035 __
- $a (PubMed)27619175
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Boardman, Leigh $u Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
- 245 10
- $a Cold tolerance is unaffected by oxygen availability despite changes in anaerobic metabolism / $c L. Boardman, JG. Sørensen, V. Koštál, P. Šimek, JS. Terblanche,
- 520 9_
- $a Insect cold tolerance depends on their ability to withstand or repair perturbations in cellular homeostasis caused by low temperature stress. Decreased oxygen availability (hypoxia) can interact with low temperature tolerance, often improving insect survival. One mechanism proposed for such responses is that whole-animal cold tolerance is set by a transition to anaerobic metabolism. Here, we provide a test of this hypothesis in an insect model system (Thaumatotibia leucotreta) by experimental manipulation of oxygen availability while measuring metabolic rate, critical thermal minimum (CTmin), supercooling point and changes in 43 metabolites in moth larvae at three key timepoints (before, during and after chill coma). Furthermore, we determined the critical oxygen partial pressure below which metabolic rate was suppressed (c. 4.5 kPa). Results showed that altering oxygen availability did not affect (non-lethal) CTmin nor (lethal) supercooling point. Metabolomic profiling revealed the upregulation of anaerobic metabolites and alterations in concentrations of citric acid cycle intermediates during and after chill coma exposure. Hypoxia exacerbated the anaerobic metabolite responses induced by low temperatures. These results suggest that cold tolerance of T. leucotreta larvae is not set by oxygen limitation, and that anaerobic metabolism in these larvae may contribute to their ability to survive in necrotic fruit.
- 650 _2
- $a aklimatizace $x fyziologie $7 D000064
- 650 _2
- $a aminokyseliny $x metabolismus $7 D000596
- 650 _2
- $a anaerobióza $x fyziologie $7 D000693
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a bazální metabolismus $x fyziologie $7 D001481
- 650 _2
- $a nízká teplota $7 D003080
- 650 _2
- $a reakce na chladový šok $x fyziologie $7 D058639
- 650 _2
- $a homeostáza $x fyziologie $7 D006706
- 650 _2
- $a larva $x fyziologie $7 D007814
- 650 _2
- $a metabolomika $7 D055432
- 650 _2
- $a můry $x fyziologie $7 D009036
- 650 _2
- $a kyslík $x metabolismus $7 D010100
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Sørensen, Jesper G $u Section for Genetics, Ecology &Evolution, Department of Bioscience, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus C, Denmark.
- 700 1_
- $a Koštál, Vladimír $u Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
- 700 1_
- $a Šimek, Petr $u Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
- 700 1_
- $a Terblanche, John S $u Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 6, č. - (2016), s. 32856
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27619175 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20181008 $b ABA008
- 991 __
- $a 20181009110902 $b ABA008
- 999 __
- $a ok $b bmc $g 1340430 $s 1031082
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 6 $c - $d 32856 $e 20160913 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- LZP __
- $a Pubmed-20181008