• Je něco špatně v tomto záznamu ?

Cold tolerance is unaffected by oxygen availability despite changes in anaerobic metabolism

L. Boardman, JG. Sørensen, V. Koštál, P. Šimek, JS. Terblanche,

. 2016 ; 6 (-) : 32856. [pub] 20160913

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc18034088

Insect cold tolerance depends on their ability to withstand or repair perturbations in cellular homeostasis caused by low temperature stress. Decreased oxygen availability (hypoxia) can interact with low temperature tolerance, often improving insect survival. One mechanism proposed for such responses is that whole-animal cold tolerance is set by a transition to anaerobic metabolism. Here, we provide a test of this hypothesis in an insect model system (Thaumatotibia leucotreta) by experimental manipulation of oxygen availability while measuring metabolic rate, critical thermal minimum (CTmin), supercooling point and changes in 43 metabolites in moth larvae at three key timepoints (before, during and after chill coma). Furthermore, we determined the critical oxygen partial pressure below which metabolic rate was suppressed (c. 4.5 kPa). Results showed that altering oxygen availability did not affect (non-lethal) CTmin nor (lethal) supercooling point. Metabolomic profiling revealed the upregulation of anaerobic metabolites and alterations in concentrations of citric acid cycle intermediates during and after chill coma exposure. Hypoxia exacerbated the anaerobic metabolite responses induced by low temperatures. These results suggest that cold tolerance of T. leucotreta larvae is not set by oxygen limitation, and that anaerobic metabolism in these larvae may contribute to their ability to survive in necrotic fruit.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18034088
003      
CZ-PrNML
005      
20181009110414.0
007      
ta
008      
181008s2016 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/srep32856 $2 doi
035    __
$a (PubMed)27619175
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Boardman, Leigh $u Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
245    10
$a Cold tolerance is unaffected by oxygen availability despite changes in anaerobic metabolism / $c L. Boardman, JG. Sørensen, V. Koštál, P. Šimek, JS. Terblanche,
520    9_
$a Insect cold tolerance depends on their ability to withstand or repair perturbations in cellular homeostasis caused by low temperature stress. Decreased oxygen availability (hypoxia) can interact with low temperature tolerance, often improving insect survival. One mechanism proposed for such responses is that whole-animal cold tolerance is set by a transition to anaerobic metabolism. Here, we provide a test of this hypothesis in an insect model system (Thaumatotibia leucotreta) by experimental manipulation of oxygen availability while measuring metabolic rate, critical thermal minimum (CTmin), supercooling point and changes in 43 metabolites in moth larvae at three key timepoints (before, during and after chill coma). Furthermore, we determined the critical oxygen partial pressure below which metabolic rate was suppressed (c. 4.5 kPa). Results showed that altering oxygen availability did not affect (non-lethal) CTmin nor (lethal) supercooling point. Metabolomic profiling revealed the upregulation of anaerobic metabolites and alterations in concentrations of citric acid cycle intermediates during and after chill coma exposure. Hypoxia exacerbated the anaerobic metabolite responses induced by low temperatures. These results suggest that cold tolerance of T. leucotreta larvae is not set by oxygen limitation, and that anaerobic metabolism in these larvae may contribute to their ability to survive in necrotic fruit.
650    _2
$a aklimatizace $x fyziologie $7 D000064
650    _2
$a aminokyseliny $x metabolismus $7 D000596
650    _2
$a anaerobióza $x fyziologie $7 D000693
650    _2
$a zvířata $7 D000818
650    _2
$a bazální metabolismus $x fyziologie $7 D001481
650    _2
$a nízká teplota $7 D003080
650    _2
$a reakce na chladový šok $x fyziologie $7 D058639
650    _2
$a homeostáza $x fyziologie $7 D006706
650    _2
$a larva $x fyziologie $7 D007814
650    _2
$a metabolomika $7 D055432
650    _2
$a můry $x fyziologie $7 D009036
650    _2
$a kyslík $x metabolismus $7 D010100
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Sørensen, Jesper G $u Section for Genetics, Ecology &Evolution, Department of Bioscience, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus C, Denmark.
700    1_
$a Koštál, Vladimír $u Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
700    1_
$a Šimek, Petr $u Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
700    1_
$a Terblanche, John S $u Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 6, č. - (2016), s. 32856
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27619175 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20181008 $b ABA008
991    __
$a 20181009110902 $b ABA008
999    __
$a ok $b bmc $g 1340430 $s 1031082
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 6 $c - $d 32856 $e 20160913 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
LZP    __
$a Pubmed-20181008

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...