• Je něco špatně v tomto záznamu ?

New insights into auxin metabolism in Bradyrhizobium japonicum

D. Torres, I. Benavidez, F. Donadio, E. Mongiardini, S. Rosas, S. Spaepen, J. Vanderleyden, A. Pěnčík, O. Novák, M. Strnad, J. Frébortová, F. Cassán,

. 2018 ; 169 (6) : 313-323. [pub] 20180508

Jazyk angličtina Země Francie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc19000746

Bacterial metabolism of phytohormones includes several processes such as biosynthesis, catabolism, conjugation, hydrolysis and homeostatic regulation. However, only biosynthesis and occasionally catabolism are studied in depth in microorganisms. In this work, we evaluated and reconsidered IAA metabolism in Bradyrhizobiumjaponicum E109, one of the most widely used strains for soybean inoculation around the world. The genomic analysis of the strain showed the presence of several genes responsible for IAA biosynthesis, mainly via indole-3-acetonitrile (IAN), indole-3-acetamide (IAM) and tryptamine (TAM) pathways. However; in vitro experiments showed that IAA is not accumulated in the culture medium in significant amounts. On the contrary, a strong degradation activity was observed after exogenous addition of 0.1 mM of IAA, IBA or NAA to the medium. B. japonicum E109 was not able to grow in culture medium containing IAA as a sole carbon source. In YEM medium, the bacteria degraded IAA and hydrolyzed amino acid auxin conjugates with alanine (IAAla), phenylalanine (IAPhe), and leucine (IAPhe), releasing IAA which was quickly degraded. Finally, the presence of exogenous IAA induced physiological changes in the bacteria such as increased biomass and exopolysaccharide production, as well as infection effectiveness and symbiotic behavior in soybean plants.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19000746
003      
CZ-PrNML
005      
20190115123504.0
007      
ta
008      
190107s2018 fr f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.resmic.2018.04.002 $2 doi
035    __
$a (PubMed)29751062
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a fr
100    1_
$a Torres, Daniela $u Laboratorio de Fisiología Vegetal y de la Interacción Planta-microorganismo, Departamento de Ciencias Naturales, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, Córdoba, Argentina.
245    10
$a New insights into auxin metabolism in Bradyrhizobium japonicum / $c D. Torres, I. Benavidez, F. Donadio, E. Mongiardini, S. Rosas, S. Spaepen, J. Vanderleyden, A. Pěnčík, O. Novák, M. Strnad, J. Frébortová, F. Cassán,
520    9_
$a Bacterial metabolism of phytohormones includes several processes such as biosynthesis, catabolism, conjugation, hydrolysis and homeostatic regulation. However, only biosynthesis and occasionally catabolism are studied in depth in microorganisms. In this work, we evaluated and reconsidered IAA metabolism in Bradyrhizobiumjaponicum E109, one of the most widely used strains for soybean inoculation around the world. The genomic analysis of the strain showed the presence of several genes responsible for IAA biosynthesis, mainly via indole-3-acetonitrile (IAN), indole-3-acetamide (IAM) and tryptamine (TAM) pathways. However; in vitro experiments showed that IAA is not accumulated in the culture medium in significant amounts. On the contrary, a strong degradation activity was observed after exogenous addition of 0.1 mM of IAA, IBA or NAA to the medium. B. japonicum E109 was not able to grow in culture medium containing IAA as a sole carbon source. In YEM medium, the bacteria degraded IAA and hydrolyzed amino acid auxin conjugates with alanine (IAAla), phenylalanine (IAPhe), and leucine (IAPhe), releasing IAA which was quickly degraded. Finally, the presence of exogenous IAA induced physiological changes in the bacteria such as increased biomass and exopolysaccharide production, as well as infection effectiveness and symbiotic behavior in soybean plants.
650    _2
$a alanin $x metabolismus $7 D000409
650    _2
$a Bradyrhizobium $x genetika $x metabolismus $7 D020369
650    _2
$a kyseliny indoloctové $x metabolismus $7 D007210
650    _2
$a leucin $x metabolismus $7 D007930
650    _2
$a fenylalanin $x metabolismus $7 D010649
650    _2
$a tvorba kořenových hlízek $x fyziologie $7 D055170
650    _2
$a bakteriální polysacharidy $x biosyntéza $7 D011135
650    _2
$a semena rostlinná $x mikrobiologie $7 D012639
650    _2
$a Glycine max $x mikrobiologie $7 D013025
650    _2
$a symbióza $x fyziologie $7 D013559
655    _2
$a časopisecké články $7 D016428
700    1_
$a Benavidez, Iliana $u Laboratorio de Fisiología Vegetal y de la Interacción Planta-microorganismo, Departamento de Ciencias Naturales, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, Córdoba, Argentina.
700    1_
$a Donadio, Florencia $u Laboratorio de Fisiología Vegetal y de la Interacción Planta-microorganismo, Departamento de Ciencias Naturales, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, Córdoba, Argentina.
700    1_
$a Mongiardini, Elias $u Laboratorio de Interacción Rizobios y Soja, Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina.
700    1_
$a Rosas, Susana $u Laboratorio de Fisiología Vegetal y de la Interacción Planta-microorganismo, Departamento de Ciencias Naturales, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, Córdoba, Argentina.
700    1_
$a Spaepen, Stijn $u Katholieke Universiteit Leuven, Leuven, Belgium; Max Planck Institute for Plant Breeding Research, Plant Microbe Interactions, Köln, Germany.
700    1_
$a Vanderleyden, Jozef $u Katholieke Universiteit Leuven, Leuven, Belgium.
700    1_
$a Pěnčík, Aleš $u Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Olomouc, Czech Republic.
700    1_
$a Novák, Ondřej $u Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Olomouc, Czech Republic.
700    1_
$a Strnad, Miroslav $u Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Olomouc, Czech Republic.
700    1_
$a Frébortová, Jitka $u Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Olomouc, Czech Republic.
700    1_
$a Cassán, Fabricio $u Laboratorio de Fisiología Vegetal y de la Interacción Planta-microorganismo, Departamento de Ciencias Naturales, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, Córdoba, Argentina. Electronic address: fcassan@exa.unrc.edu.ar.
773    0_
$w MED00004095 $t Research in microbiology $x 1769-7123 $g Roč. 169, č. 6 (2018), s. 313-323
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29751062 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190107 $b ABA008
991    __
$a 20190115123714 $b ABA008
999    __
$a ok $b bmc $g 1364760 $s 1038869
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 169 $c 6 $d 313-323 $e 20180508 $i 1769-7123 $m Research in microbiology $n Res Microbiol $x MED00004095
LZP    __
$a Pubmed-20190107

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...