Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Bayesian estimation of multivariate normal mixtures with covariate-dependent mixing weights, with an application in antimicrobial resistance monitoring

S. Jaspers, A. Komárek, M. Aerts,

. 2018 ; 60 (1) : 7-19. [pub] 20170912

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19001191

Bacteria with a reduced susceptibility against antimicrobials pose a major threat to public health. Therefore, large programs have been set up to collect minimum inhibition concentration (MIC) values. These values can be used to monitor the distribution of the nonsusceptible isolates in the general population. Data are collected within several countries and over a number of years. In addition, the sampled bacterial isolates were not tested for susceptibility against one antimicrobial, but rather against an entire range of substances. Interest is therefore in the analysis of the joint distribution of MIC data on two or more antimicrobials, while accounting for a possible effect of covariates. In this regard, we present a Bayesian semiparametric density estimation routine, based on multivariate Gaussian mixtures. The mixing weights are allowed to depend on certain covariates, thereby allowing the user to detect certain changes over, for example, time. The new approach was applied to data collected in Europe in 2010, 2012, and 2013. We investigated the susceptibility of Escherichia coli isolates against ampicillin and trimethoprim, where we found that there seems to be a significant increase in the proportion of nonsusceptible isolates. In addition, a simulation study was carried out, showing the promising behavior of the proposed method in the field of antimicrobial resistance.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19001191
003      
CZ-PrNML
005      
20190114095855.0
007      
ta
008      
190107s2018 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1002/bimj.201600253 $2 doi
035    __
$a (PubMed)28898442
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Jaspers, Stijn $u Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, BE3590, Diepenbeek, Belgium.
245    10
$a Bayesian estimation of multivariate normal mixtures with covariate-dependent mixing weights, with an application in antimicrobial resistance monitoring / $c S. Jaspers, A. Komárek, M. Aerts,
520    9_
$a Bacteria with a reduced susceptibility against antimicrobials pose a major threat to public health. Therefore, large programs have been set up to collect minimum inhibition concentration (MIC) values. These values can be used to monitor the distribution of the nonsusceptible isolates in the general population. Data are collected within several countries and over a number of years. In addition, the sampled bacterial isolates were not tested for susceptibility against one antimicrobial, but rather against an entire range of substances. Interest is therefore in the analysis of the joint distribution of MIC data on two or more antimicrobials, while accounting for a possible effect of covariates. In this regard, we present a Bayesian semiparametric density estimation routine, based on multivariate Gaussian mixtures. The mixing weights are allowed to depend on certain covariates, thereby allowing the user to detect certain changes over, for example, time. The new approach was applied to data collected in Europe in 2010, 2012, and 2013. We investigated the susceptibility of Escherichia coli isolates against ampicillin and trimethoprim, where we found that there seems to be a significant increase in the proportion of nonsusceptible isolates. In addition, a simulation study was carried out, showing the promising behavior of the proposed method in the field of antimicrobial resistance.
650    _2
$a antibakteriální látky $x farmakologie $7 D000900
650    _2
$a Bayesova věta $7 D001499
650    12
$a monitorování léčiv $7 D016903
650    12
$a bakteriální léková rezistence $7 D024881
650    _2
$a teoretické modely $7 D008962
650    _2
$a multivariační analýza $7 D015999
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Komárek, Arnošt $u Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, CZ-186, 75 Praha 8-Karln, Czech Republic.
700    1_
$a Aerts, Marc $u Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, BE3590, Diepenbeek, Belgium.
773    0_
$w MED00000764 $t Biometrical journal. Biometrische Zeitschrift $x 1521-4036 $g Roč. 60, č. 1 (2018), s. 7-19
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28898442 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190107 $b ABA008
991    __
$a 20190114100104 $b ABA008
999    __
$a ok $b bmc $g 1365093 $s 1039314
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 60 $c 1 $d 7-19 $e 20170912 $i 1521-4036 $m Biometrical journal $n Biom J $x MED00000764
LZP    __
$a Pubmed-20190107

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...