Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Small Force, Big Impact: Next Generation Organ-on-a-Chip Systems Incorporating Biomechanical Cues

E. Ergir, B. Bachmann, H. Redl, G. Forte, P. Ertl,

. 2018 ; 9 (-) : 1417. [pub] 20181009

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc19001612

Mechanobiology-on-a-chip is a growing field focusing on how mechanical inputs modulate physico-chemical output in microphysiological systems. It is well known that biomechanical cues trigger a variety of molecular events and adjustment of mechanical forces is therefore essential for mimicking in vivo physiologies in organ-on-a-chip technology. Biomechanical inputs in organ-on-a-chip systems can range from variations in extracellular matrix type and stiffness and applied shear stresses to active stretch/strain or compression forces using integrated flexible membranes. The main advantages of these organ-on-a-chip systems are therefore (a) the control over spatiotemporal organization of in vivo-like tissue architectures, (b) the ability to precisely control the amount, duration and intensity of the biomechanical stimuli, and (c) the capability of monitoring in real time the effects of applied mechanical forces on cell, tissue and organ functions. Consequently, over the last decade a variety of microfluidic devices have been introduced to recreate physiological microenvironments that also account for the influence of physical forces on biological functions. In this review we present recent advances in mechanobiological lab-on-a-chip systems and report on lessons learned from these current mechanobiological models. Additionally, future developments needed to engineer next-generation physiological and pathological organ-on-a-chip models are discussed.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19001612
003      
CZ-PrNML
005      
20190107105939.0
007      
ta
008      
190107s2018 sz f 000 0|eng||
024    7_
$a 10.3389/fphys.2018.01417 $2 doi
035    __
$a (PubMed)30356887
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Ergir, Ece $u Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia. Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria.
245    10
$a Small Force, Big Impact: Next Generation Organ-on-a-Chip Systems Incorporating Biomechanical Cues / $c E. Ergir, B. Bachmann, H. Redl, G. Forte, P. Ertl,
520    9_
$a Mechanobiology-on-a-chip is a growing field focusing on how mechanical inputs modulate physico-chemical output in microphysiological systems. It is well known that biomechanical cues trigger a variety of molecular events and adjustment of mechanical forces is therefore essential for mimicking in vivo physiologies in organ-on-a-chip technology. Biomechanical inputs in organ-on-a-chip systems can range from variations in extracellular matrix type and stiffness and applied shear stresses to active stretch/strain or compression forces using integrated flexible membranes. The main advantages of these organ-on-a-chip systems are therefore (a) the control over spatiotemporal organization of in vivo-like tissue architectures, (b) the ability to precisely control the amount, duration and intensity of the biomechanical stimuli, and (c) the capability of monitoring in real time the effects of applied mechanical forces on cell, tissue and organ functions. Consequently, over the last decade a variety of microfluidic devices have been introduced to recreate physiological microenvironments that also account for the influence of physical forces on biological functions. In this review we present recent advances in mechanobiological lab-on-a-chip systems and report on lessons learned from these current mechanobiological models. Additionally, future developments needed to engineer next-generation physiological and pathological organ-on-a-chip models are discussed.
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
700    1_
$a Bachmann, Barbara $u Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria. AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria. Austrian Cluster for Tissue Regeneration, Vienna, Austria. Kompetenzzentrum für MechanoBiologie (INTERREG V-A Austria - Czech Republic Programme, ATCZ133), Vienna, Austria.
700    1_
$a Redl, Heinz $u AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria. Austrian Cluster for Tissue Regeneration, Vienna, Austria. Kompetenzzentrum für MechanoBiologie (INTERREG V-A Austria - Czech Republic Programme, ATCZ133), Vienna, Austria.
700    1_
$a Forte, Giancarlo $u Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia. Competence Center for Mechanobiology (INTERREG V-A Austria - Czech Republic Programme, ATCZ133), Brno, Czechia. Department of Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland.
700    1_
$a Ertl, Peter $u Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria. Austrian Cluster for Tissue Regeneration, Vienna, Austria. Kompetenzzentrum für MechanoBiologie (INTERREG V-A Austria - Czech Republic Programme, ATCZ133), Vienna, Austria.
773    0_
$w MED00174601 $t Front Physiol $x 1664-042X $g Roč. 9, č. - (2018), s. 1417
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30356887 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a
990    __
$a 20190107 $b ABA008
999    __
$a ind $b bmc $g 1365422 $s 1039735
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 9 $c - $d 1417 $e 20181009 $i 1664-042X $m Frontiers in physiology $n Front. physiol. $x MED00174601
LZP    __
$a Pubmed-20190107

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...