-
Je něco špatně v tomto záznamu ?
Vital Sign Monitoring and Cardiac Triggering at 1.5 Tesla: A Practical Solution by an MR-Ballistocardiography Fiber-Optic Sensor
J. Nedoma, M. Fajkus, R. Martinek, H. Nazeran,
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články
NLK
Directory of Open Access Journals
od 2001
PubMed Central
od 2003
Europe PubMed Central
od 2003
ProQuest Central
od 2001-01-01
Open Access Digital Library
od 2001-01-01
Open Access Digital Library
od 2003-01-01
Health & Medicine (ProQuest)
od 2001-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2001
PubMed
30682784
DOI
10.3390/s19030470
Knihovny.cz E-zdroje
- MeSH
- balistokardiografie metody MeSH
- dechová frekvence fyziologie MeSH
- elektrokardiografie MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- srdce fyziologie MeSH
- srdeční frekvence fyziologie MeSH
- technologie optických vláken metody MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
This article presents a solution for continuous monitoring of both respiratory rate (RR) and heart rate (HR) inside Magnetic Resonance Imaging (MRI) environments by a novel ballistocardiography (BCG) fiber-optic sensor. We designed and created a sensor based on the Fiber Bragg Grating (FBG) probe encapsulated inside fiberglass (fiberglass is a composite material made up of glass fiber, fabric, and cured synthetic resin). Due to this, the encapsulation sensor is characterized by very small dimensions (30 × 10 × 0.8 mm) and low weight (2 g). We present original results of real MRI measurements (conventionally most used 1.5 T MR scanner) involving ten volunteers (six men and four women) by performing conventional electrocardiography (ECG) to measure the HR and using a Pneumatic Respiratory Transducer (PRT) for RR monitoring. The acquired sensor data were compared against real measurements using the objective Bland⁻Altman method, and the functionality of the sensor was validated (95.36% of the sensed values were within the ±1.96 SD range for the RR determination and 95.13% of the values were within the ±1.96 SD range for the HR determination) by this means. The accuracy of this sensor was further characterized by a relative error below 5% (4.64% for RR and 4.87% for HR measurements). The tests carried out in an MRI environment demonstrated that the presence of the FBG sensor in the MRI scanner does not affect the quality of this imaging modality. The results also confirmed the possibility of using the sensor for cardiac triggering at 1.5 T (for synchronization and gating of cardiovascular magnetic resonance) and for cardiac triggering when a Diffusion Weighted Imaging (DWI) is used.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19011949
- 003
- CZ-PrNML
- 005
- 20190408090636.0
- 007
- ta
- 008
- 190405s2019 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/s19030470 $2 doi
- 035 __
- $a (PubMed)30682784
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Nedoma, Jan $u Department of Telecommunications, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, 70833 Ostrava, Czech Republic. jan.nedoma@vsb.cz.
- 245 10
- $a Vital Sign Monitoring and Cardiac Triggering at 1.5 Tesla: A Practical Solution by an MR-Ballistocardiography Fiber-Optic Sensor / $c J. Nedoma, M. Fajkus, R. Martinek, H. Nazeran,
- 520 9_
- $a This article presents a solution for continuous monitoring of both respiratory rate (RR) and heart rate (HR) inside Magnetic Resonance Imaging (MRI) environments by a novel ballistocardiography (BCG) fiber-optic sensor. We designed and created a sensor based on the Fiber Bragg Grating (FBG) probe encapsulated inside fiberglass (fiberglass is a composite material made up of glass fiber, fabric, and cured synthetic resin). Due to this, the encapsulation sensor is characterized by very small dimensions (30 × 10 × 0.8 mm) and low weight (2 g). We present original results of real MRI measurements (conventionally most used 1.5 T MR scanner) involving ten volunteers (six men and four women) by performing conventional electrocardiography (ECG) to measure the HR and using a Pneumatic Respiratory Transducer (PRT) for RR monitoring. The acquired sensor data were compared against real measurements using the objective Bland⁻Altman method, and the functionality of the sensor was validated (95.36% of the sensed values were within the ±1.96 SD range for the RR determination and 95.13% of the values were within the ±1.96 SD range for the HR determination) by this means. The accuracy of this sensor was further characterized by a relative error below 5% (4.64% for RR and 4.87% for HR measurements). The tests carried out in an MRI environment demonstrated that the presence of the FBG sensor in the MRI scanner does not affect the quality of this imaging modality. The results also confirmed the possibility of using the sensor for cardiac triggering at 1.5 T (for synchronization and gating of cardiovascular magnetic resonance) and for cardiac triggering when a Diffusion Weighted Imaging (DWI) is used.
- 650 _2
- $a balistokardiografie $x metody $7 D001450
- 650 _2
- $a elektrokardiografie $7 D004562
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a technologie optických vláken $x metody $7 D005336
- 650 _2
- $a srdce $x fyziologie $7 D006321
- 650 _2
- $a srdeční frekvence $x fyziologie $7 D006339
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a magnetická rezonanční tomografie $7 D008279
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a dechová frekvence $x fyziologie $7 D056152
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Fajkus, Marcel $u Department of Telecommunications, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, 70833 Ostrava, Czech Republic. marcel.fajkus@vsb.cz.
- 700 1_
- $a Martinek, Radek $u Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, 70833 Ostrava, Czech Republic. radek.martinek@vsb.cz.
- 700 1_
- $a Nazeran, Homer $u Department of Metallurgical, Materials and Biomedical Engineering, University of Texas El Paso, 500 W University Ave, El Paso, TX 79968, USA. hnazeran@utep.edu.
- 773 0_
- $w MED00008309 $t Sensors (Basel, Switzerland) $x 1424-8220 $g Roč. 19, č. 3 (2019)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30682784 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190405 $b ABA008
- 991 __
- $a 20190408090649 $b ABA008
- 999 __
- $a ok $b bmc $g 1391259 $s 1050254
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 19 $c 3 $e 20190124 $i 1424-8220 $m Sensors $n Sensors Basel $x MED00008309
- LZP __
- $a Pubmed-20190405