-
Je něco špatně v tomto záznamu ?
ASH1-catalyzed H3K36 methylation drives gene repression and marks H3K27me2/3-competent chromatin
VT. Bicocca, T. Ormsby, KK. Adhvaryu, S. Honda, EU. Selker,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural
NLK
Directory of Open Access Journals
od 2013
Free Medical Journals
od 2012
PubMed Central
od 2012
Europe PubMed Central
od 2012
ProQuest Central
od 2012-01-01
Open Access Digital Library
od 2012-01-01
Open Access Digital Library
od 2013-01-01
Health & Medicine (ProQuest)
od 2012-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2012
PubMed
30468429
DOI
10.7554/elife.41497
Knihovny.cz E-zdroje
- MeSH
- chromatin metabolismus MeSH
- epigenetická represe * MeSH
- histonlysin-N-methyltransferasa metabolismus MeSH
- histony metabolismus MeSH
- lysin metabolismus MeSH
- metylace MeSH
- Neurospora crassa enzymologie genetika metabolismus MeSH
- posttranslační úpravy proteinů * MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
Methylation of histone H3 at lysine 36 (H3K36me), a widely-distributed chromatin mark, largely results from association of the lysine methyltransferase (KMT) SET-2 with RNA polymerase II (RNAPII), but most eukaryotes also have additional H3K36me KMTs that act independently of RNAPII. These include the orthologs of ASH1, which are conserved in animals, plants, and fungi but whose function and control are poorly understood. We found that Neurospora crassa has just two H3K36 KMTs, ASH1 and SET-2, and were able to explore the function and distribution of each enzyme independently. While H3K36me deposited by SET-2 marks active genes, inactive genes are modified by ASH1 and its activity is critical for their repression. ASH1-marked chromatin can be further modified by methylation of H3K27, and ASH1 catalytic activity modulates the accumulation of H3K27me2/3 both positively and negatively. These findings provide new insight into ASH1 function, H3K27me2/3 establishment, and repression in facultative heterochromatin.
Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
Faculty of Medical Sciences University of Fukui Fukui Japan
Institute of Molecular Biology University of Oregon Eugene United States
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19012119
- 003
- CZ-PrNML
- 005
- 20190411104729.0
- 007
- ta
- 008
- 190405s2018 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.7554/eLife.41497 $2 doi
- 035 __
- $a (PubMed)30468429
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Bicocca, Vincent T $u Institute of Molecular Biology, University of Oregon, Eugene, United States.
- 245 10
- $a ASH1-catalyzed H3K36 methylation drives gene repression and marks H3K27me2/3-competent chromatin / $c VT. Bicocca, T. Ormsby, KK. Adhvaryu, S. Honda, EU. Selker,
- 520 9_
- $a Methylation of histone H3 at lysine 36 (H3K36me), a widely-distributed chromatin mark, largely results from association of the lysine methyltransferase (KMT) SET-2 with RNA polymerase II (RNAPII), but most eukaryotes also have additional H3K36me KMTs that act independently of RNAPII. These include the orthologs of ASH1, which are conserved in animals, plants, and fungi but whose function and control are poorly understood. We found that Neurospora crassa has just two H3K36 KMTs, ASH1 and SET-2, and were able to explore the function and distribution of each enzyme independently. While H3K36me deposited by SET-2 marks active genes, inactive genes are modified by ASH1 and its activity is critical for their repression. ASH1-marked chromatin can be further modified by methylation of H3K27, and ASH1 catalytic activity modulates the accumulation of H3K27me2/3 both positively and negatively. These findings provide new insight into ASH1 function, H3K27me2/3 establishment, and repression in facultative heterochromatin.
- 650 _2
- $a chromatin $x metabolismus $7 D002843
- 650 12
- $a epigenetická represe $7 D063185
- 650 _2
- $a histonlysin-N-methyltransferasa $x metabolismus $7 D011495
- 650 _2
- $a histony $x metabolismus $7 D006657
- 650 _2
- $a lysin $x metabolismus $7 D008239
- 650 _2
- $a metylace $7 D008745
- 650 _2
- $a Neurospora crassa $x enzymologie $x genetika $x metabolismus $7 D009492
- 650 12
- $a posttranslační úpravy proteinů $7 D011499
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 700 1_
- $a Ormsby, Tereza $u Department of Biochemistry Faculty of Science, Charles University, Prague, Czech Republic.
- 700 1_
- $a Adhvaryu, Keyur K $u St. George's University School of Medicine, Grenada, Caribbean.
- 700 1_
- $a Honda, Shinji $u Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
- 700 1_
- $a Selker, Eric U $u Institute of Molecular Biology, University of Oregon, Eugene, United States.
- 773 0_
- $w MED00188753 $t eLife $x 2050-084X $g Roč. 7, č. - (2018)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30468429 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190405 $b ABA008
- 991 __
- $a 20190411104746 $b ABA008
- 999 __
- $a ok $b bmc $g 1391429 $s 1050424
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 7 $c - $e 20181123 $i 2050-084X $m eLife $n eLife $x MED00188753
- LZP __
- $a Pubmed-20190405