-
Je něco špatně v tomto záznamu ?
New concepts in follicular lymphoma biology: From BCL2 to epigenetic regulators and non-coding RNAs
J. Devan, A. Janikova, M. Mraz,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
- MeSH
- biologické markery MeSH
- epigeneze genetická MeSH
- folikulární lymfom etiologie metabolismus patologie MeSH
- lidé MeSH
- nekódující RNA genetika MeSH
- protoonkogenní proteiny c-bcl-2 genetika metabolismus MeSH
- receptory antigenů B-buněk metabolismus MeSH
- regulace genové exprese u nádorů MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The molecular pathogenesis of follicular lymphoma (FL) was partially revealed 3 decades ago, with the discovery of the translocation that brings BCL2 under the influence of immunoglobulin heavy chain enhancers in a vast majority of cases. Despite the importance of this seminal observation, it has become increasingly clear that additional genetic alterations need to occur to trigger neoplastic transformation and disease progression. The evolution of FL involves developmental arrest and disruption of the normal function of one or more of epigenetic regulators including KMT2D/MLL2, EZH2, CBP/CREBBP, p300/EP300, and HIST1H1 in >95% of cases. B-cells "arrested" in germinal centers acquire dozens of additional genetic aberrations that influence key pathways controlling their physiological development including B Cell Receptor (BCR) signaling, PI3K/AKT, TLR, mTOR, NF-κB, JAK/STAT, MAPK, CD40/CD40L, chemokine, and interleukin signaling. Additionally, most cases of FL do not result from linear accumulation of genomic aberrations, but rather evolve from a common progenitor cell population by diverse evolution, creating multiple FL subclones in one patient. Moreover, one of the subclones might acquire a combination of aberrations involving genes controlling cell survival and proliferation including MDM2, CDKN2A/B, BCL6, MYC, TP53, β2M, FOXO1, MYD88, STAT3, or miR-17-92, and this can lead to the transformation of an initially indolent FL to an aggressive lymphoma (2%-3% risk per year). The complexity of the disease is also underscored by the importance of its interactions with the microenvironment that can substantially influence disease development and prognosis. Interpreting individual aberrations in relation to their impact on normal processes, their frequency, position in the disease evolution, and the consequences of their (co)occurrence, are the basis for understanding FL pathogenesis. This is necessary for the identification of patients with risk of early progression or transformation, for the development of novel targeted therapies, and for personalized treatment approaches. In this review, we summarize recent knowledge of molecular pathways and microenvironmental components involved in FL biology, and discuss them in the context of physiological B-cell development, FL evolution, and targeted therapies.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19012221
- 003
- CZ-PrNML
- 005
- 20240416075711.0
- 007
- ta
- 008
- 190405s2018 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1053/j.seminoncol.2018.07.005 $2 doi
- 035 __
- $a (PubMed)30360879
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Deván, Ján $u Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic. $7 xx0316056
- 245 10
- $a New concepts in follicular lymphoma biology: From BCL2 to epigenetic regulators and non-coding RNAs / $c J. Devan, A. Janikova, M. Mraz,
- 520 9_
- $a The molecular pathogenesis of follicular lymphoma (FL) was partially revealed 3 decades ago, with the discovery of the translocation that brings BCL2 under the influence of immunoglobulin heavy chain enhancers in a vast majority of cases. Despite the importance of this seminal observation, it has become increasingly clear that additional genetic alterations need to occur to trigger neoplastic transformation and disease progression. The evolution of FL involves developmental arrest and disruption of the normal function of one or more of epigenetic regulators including KMT2D/MLL2, EZH2, CBP/CREBBP, p300/EP300, and HIST1H1 in >95% of cases. B-cells "arrested" in germinal centers acquire dozens of additional genetic aberrations that influence key pathways controlling their physiological development including B Cell Receptor (BCR) signaling, PI3K/AKT, TLR, mTOR, NF-κB, JAK/STAT, MAPK, CD40/CD40L, chemokine, and interleukin signaling. Additionally, most cases of FL do not result from linear accumulation of genomic aberrations, but rather evolve from a common progenitor cell population by diverse evolution, creating multiple FL subclones in one patient. Moreover, one of the subclones might acquire a combination of aberrations involving genes controlling cell survival and proliferation including MDM2, CDKN2A/B, BCL6, MYC, TP53, β2M, FOXO1, MYD88, STAT3, or miR-17-92, and this can lead to the transformation of an initially indolent FL to an aggressive lymphoma (2%-3% risk per year). The complexity of the disease is also underscored by the importance of its interactions with the microenvironment that can substantially influence disease development and prognosis. Interpreting individual aberrations in relation to their impact on normal processes, their frequency, position in the disease evolution, and the consequences of their (co)occurrence, are the basis for understanding FL pathogenesis. This is necessary for the identification of patients with risk of early progression or transformation, for the development of novel targeted therapies, and for personalized treatment approaches. In this review, we summarize recent knowledge of molecular pathways and microenvironmental components involved in FL biology, and discuss them in the context of physiological B-cell development, FL evolution, and targeted therapies.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a biologické markery $7 D015415
- 650 _2
- $a epigeneze genetická $7 D044127
- 650 _2
- $a regulace genové exprese u nádorů $7 D015972
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a folikulární lymfom $x etiologie $x metabolismus $x patologie $7 D008224
- 650 _2
- $a protoonkogenní proteiny c-bcl-2 $x genetika $x metabolismus $7 D019253
- 650 _2
- $a nekódující RNA $x genetika $7 D022661
- 650 _2
- $a receptory antigenů B-buněk $x metabolismus $7 D011947
- 650 _2
- $a signální transdukce $7 D015398
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Janikova, Andrea $u Department of Internal Medicine, Haematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Mraz, Marek $u Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Internal Medicine, Haematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic. Electronic address: marek.mraz@email.cz.
- 773 0_
- $w MED00004330 $t Seminars in oncology $x 1532-8708 $g Roč. 45, č. 5-6 (2018), s. 291-302
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30360879 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190405 $b ABA008
- 991 __
- $a 20240416075708 $b ABA008
- 999 __
- $a ok $b bmc $g 1391531 $s 1050526
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 45 $c 5-6 $d 291-302 $e 20181023 $i 1532-8708 $m Seminars in oncology $n Semin Oncol $x MED00004330
- LZP __
- $a Pubmed-20190405