Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Cell wall integrity modulates Arabidopsis thaliana cell cycle gene expression in a cytokinin- and nitrate reductase-dependent manner

N. Gigli-Bisceglia, T. Engelsdorf, M. Strnad, L. Vaahtera, GA. Khan, A. Yamoune, L. Alipanah, O. Novák, S. Persson, J. Hejatko, T. Hamann,

. 2018 ; 145 (19) : . [pub] 20181002

Language English Country England, Great Britain

Document type Journal Article, Research Support, Non-U.S. Gov't

E-resources Online Full text

NLK Free Medical Journals from 1953 to 6 months ago
Open Access Digital Library from 1953-03-01 to 6 months ago

During plant growth and defense, cell cycle activity needs to be coordinated with cell wall integrity. Little is known about how this coordination is achieved. Here, we investigated coordination in Arabidopsis thaliana seedlings by studying the impact of cell wall damage (CWD, caused by cellulose biosynthesis inhibition) on cytokinin homeostasis, cell cycle gene expression and cell shape in root tips. CWD inhibited cell cycle gene expression and increased transition zone cell width in an osmosensitive manner. These results were correlated with CWD-induced, osmosensitive changes in cytokinin homeostasis. Expression of CYTOKININ OXIDASE/DEHYDROGENASE 2 and 3 (CKX2, CKX3), which encode cytokinin-degrading enzymes, was induced by CWD and reduced by osmoticum treatment. In nitrate reductase1 nitrate reductase2 (nia1 nia2) seedlings, CKX2 and CKX3 transcript levels were not increased and cell cycle gene expression was not repressed by CWD. Moreover, established CWD-induced responses, such as jasmonic acid, salicylic acid and lignin production, were also absent, implying a central role of NIA1/2-mediated processes in regulation of CWD responses. These results suggest that CWD enhances cytokinin degradation rates through a NIA1/2-mediated process, leading to attenuation of cell cycle gene expression.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19012395
003      
CZ-PrNML
005      
20190411102837.0
007      
ta
008      
190405s2018 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1242/dev.166678 $2 doi
035    __
$a (PubMed)30190280
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Gigli-Bisceglia, Nora $u Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
245    10
$a Cell wall integrity modulates Arabidopsis thaliana cell cycle gene expression in a cytokinin- and nitrate reductase-dependent manner / $c N. Gigli-Bisceglia, T. Engelsdorf, M. Strnad, L. Vaahtera, GA. Khan, A. Yamoune, L. Alipanah, O. Novák, S. Persson, J. Hejatko, T. Hamann,
520    9_
$a During plant growth and defense, cell cycle activity needs to be coordinated with cell wall integrity. Little is known about how this coordination is achieved. Here, we investigated coordination in Arabidopsis thaliana seedlings by studying the impact of cell wall damage (CWD, caused by cellulose biosynthesis inhibition) on cytokinin homeostasis, cell cycle gene expression and cell shape in root tips. CWD inhibited cell cycle gene expression and increased transition zone cell width in an osmosensitive manner. These results were correlated with CWD-induced, osmosensitive changes in cytokinin homeostasis. Expression of CYTOKININ OXIDASE/DEHYDROGENASE 2 and 3 (CKX2, CKX3), which encode cytokinin-degrading enzymes, was induced by CWD and reduced by osmoticum treatment. In nitrate reductase1 nitrate reductase2 (nia1 nia2) seedlings, CKX2 and CKX3 transcript levels were not increased and cell cycle gene expression was not repressed by CWD. Moreover, established CWD-induced responses, such as jasmonic acid, salicylic acid and lignin production, were also absent, implying a central role of NIA1/2-mediated processes in regulation of CWD responses. These results suggest that CWD enhances cytokinin degradation rates through a NIA1/2-mediated process, leading to attenuation of cell cycle gene expression.
650    _2
$a Arabidopsis $x cytologie $x účinky léků $x genetika $7 D017360
650    _2
$a proteiny huseníčku $x metabolismus $7 D029681
650    _2
$a benzamidy $x farmakologie $7 D001549
650    _2
$a buněčný cyklus $x účinky léků $x genetika $7 D002453
650    _2
$a buněčná stěna $x účinky léků $x metabolismus $7 D002473
650    _2
$a cytokininy $x farmakologie $7 D003583
650    12
$a regulace genové exprese u rostlin $x účinky léků $7 D018506
650    _2
$a homeostáza $x účinky léků $7 D006706
650    _2
$a biologické modely $7 D008954
650    _2
$a nitrátreduktasa $x metabolismus $7 D050901
650    _2
$a osmóza $7 D009995
650    _2
$a fenotyp $7 D010641
650    _2
$a kořeny rostlin $x cytologie $x účinky léků $x růst a vývoj $7 D018517
650    _2
$a messenger RNA $x genetika $x metabolismus $7 D012333
650    _2
$a semenáček $x účinky léků $x genetika $7 D036226
650    _2
$a sorbitol $x farmakologie $7 D013012
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Engelsdorf, Timo $u Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
700    1_
$a Strnad, Miroslav $u Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic.
700    1_
$a Vaahtera, Lauri $u Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
700    1_
$a Khan, Ghazanfar Abbas $u School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia.
700    1_
$a Yamoune, Amel $u Laboratory of Molecular Plant Physiology and Functional Genomics and Proteomics of Plants CEITEC-Central European Institute of Technology Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic.
700    1_
$a Alipanah, Leila $u Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
700    1_
$a Novák, Ondřej $u Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic.
700    1_
$a Persson, Staffan $u School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia.
700    1_
$a Hejatko, Jan $u Laboratory of Molecular Plant Physiology and Functional Genomics and Proteomics of Plants CEITEC-Central European Institute of Technology Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic.
700    1_
$a Hamann, Thorsten $u Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway Thorsten.hamann@ntnu.no.
773    0_
$w MED00001363 $t Development (Cambridge, England) $x 1477-9129 $g Roč. 145, č. 19 (2018)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30190280 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190405 $b ABA008
991    __
$a 20190411102855 $b ABA008
999    __
$a ok $b bmc $g 1391705 $s 1050700
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 145 $c 19 $e 20181002 $i 1477-9129 $m Development $n Development $x MED00001363
LZP    __
$a Pubmed-20190405

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...