• Je něco špatně v tomto záznamu ?

Temperature response of permafrost soil carbon is attenuated by mineral protection

N. Gentsch, B. Wild, R. Mikutta, P. Čapek, K. Diáková, M. Schrumpf, S. Turner, C. Minnich, F. Schaarschmidt, O. Shibistova, J. Schnecker, T. Urich, A. Gittel, H. Šantrůčková, J. Bárta, N. Lashchinskiy, R. Fuß, A. Richter, G. Guggenberger,

. 2018 ; 24 (8) : 3401-3415. [pub] 20180601

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19012659

Climate change in Arctic ecosystems fosters permafrost thaw and makes massive amounts of ancient soil organic carbon (OC) available to microbial breakdown. However, fractions of the organic matter (OM) may be protected from rapid decomposition by their association with minerals. Little is known about the effects of mineral-organic associations (MOA) on the microbial accessibility of OM in permafrost soils and it is not clear which factors control its temperature sensitivity. In order to investigate if and how permafrost soil OC turnover is affected by mineral controls, the heavy fraction (HF) representing mostly MOA was obtained by density fractionation from 27 permafrost soil profiles of the Siberian Arctic. In parallel laboratory incubations, the unfractionated soils (bulk) and their HF were comparatively incubated for 175 days at 5 and 15°C. The HF was equivalent to 70 ± 9% of the bulk CO2 respiration as compared to a share of 63 ± 1% of bulk OC that was stored in the HF. Significant reduction of OC mineralization was found in all treatments with increasing OC content of the HF (HF-OC), clay-size minerals and Fe or Al oxyhydroxides. Temperature sensitivity (Q10) decreased with increasing soil depth from 2.4 to 1.4 in the bulk soil and from 2.9 to 1.5 in the HF. A concurrent increase in the metal-to-HF-OC ratios with soil depth suggests a stronger bonding of OM to minerals in the subsoil. There, the younger 14 C signature in CO2 than that of the OC indicates a preferential decomposition of the more recent OM and the existence of a MOA fraction with limited access of OM to decomposers. These results indicate strong mineral controls on the decomposability of OM after permafrost thaw and on its temperature sensitivity. Thus, we here provide evidence that OM temperature sensitivity can be attenuated by MOA in permafrost soils.

Central Siberian Botanical Garden Siberian Branch of Russian Academy of Sciences Novosibirsk Russia

Department of Biology Centre for Geobiology University of Bergen Bergen Norway Department of Bioscience Centre for Geomicrobiology Aarhus Denmark

Department of Ecogenomics and Systems Biology University of Vienna Vienna Austria Institute of Microbiology Ernst Moritz Arndt University Greifswald Germany

Department of Ecosystems Biology University of South Bohemia České Budéjovice Czech Republic

Department of Microbiology and Ecosystem Science University of Vienna Vienna Austria Austrian Polar Research Institute Vienna Austria

Department of Microbiology and Ecosystem Science University of Vienna Vienna Austria Austrian Polar Research Institute Vienna Austria Department of Environmental Science and Analytical Chemistry Stockholm University Stockholm Sweden Bolin Centre for Climate Research Stockholm University Stockholm Sweden

Department of Microbiology and Ecosystem Science University of Vienna Vienna Austria Austrian Polar Research Institute Vienna Austria Department of Natural Resources and the Environment University of New Hampshire Durham New Hampshire

Federal Institute for Geosciences and Natural Resources Hannover Germany

Institute of Biostatistics Leibniz Universität Hannover Hannover Germany

Institute of Soil Science Leibniz Universität Hannover Hannover Germany

Institute of Soil Science Leibniz Universität Hannover Hannover Germany 5 N Sukachev Institute of Forest Siberian Branch of Russian Academy of Sciences Krasnoyarsk Russia

Institute of Soil Science Leibniz Universität Hannover Hannover Germany Soil Ecology University of Bayreuth Bayreuth Germany

Institute of Soil Science Leibniz Universität Hannover Hannover Germany Soil Science and Soil Protection Martin Luther Universität Halle Wittenberg Halle Germany

Max Planck Institute for Biogeochemistry Jena Germany

Thünen Institute of Climate Smart Agriculture Braunschweig Germany

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19012659
003      
CZ-PrNML
005      
20190409152646.0
007      
ta
008      
190405s2018 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1111/gcb.14316 $2 doi
035    __
$a (PubMed)29774972
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Gentsch, Norman $u Institute of Soil Science, Leibniz Universität Hannover, Hannover, Germany.
245    10
$a Temperature response of permafrost soil carbon is attenuated by mineral protection / $c N. Gentsch, B. Wild, R. Mikutta, P. Čapek, K. Diáková, M. Schrumpf, S. Turner, C. Minnich, F. Schaarschmidt, O. Shibistova, J. Schnecker, T. Urich, A. Gittel, H. Šantrůčková, J. Bárta, N. Lashchinskiy, R. Fuß, A. Richter, G. Guggenberger,
520    9_
$a Climate change in Arctic ecosystems fosters permafrost thaw and makes massive amounts of ancient soil organic carbon (OC) available to microbial breakdown. However, fractions of the organic matter (OM) may be protected from rapid decomposition by their association with minerals. Little is known about the effects of mineral-organic associations (MOA) on the microbial accessibility of OM in permafrost soils and it is not clear which factors control its temperature sensitivity. In order to investigate if and how permafrost soil OC turnover is affected by mineral controls, the heavy fraction (HF) representing mostly MOA was obtained by density fractionation from 27 permafrost soil profiles of the Siberian Arctic. In parallel laboratory incubations, the unfractionated soils (bulk) and their HF were comparatively incubated for 175 days at 5 and 15°C. The HF was equivalent to 70 ± 9% of the bulk CO2 respiration as compared to a share of 63 ± 1% of bulk OC that was stored in the HF. Significant reduction of OC mineralization was found in all treatments with increasing OC content of the HF (HF-OC), clay-size minerals and Fe or Al oxyhydroxides. Temperature sensitivity (Q10) decreased with increasing soil depth from 2.4 to 1.4 in the bulk soil and from 2.9 to 1.5 in the HF. A concurrent increase in the metal-to-HF-OC ratios with soil depth suggests a stronger bonding of OM to minerals in the subsoil. There, the younger 14 C signature in CO2 than that of the OC indicates a preferential decomposition of the more recent OM and the existence of a MOA fraction with limited access of OM to decomposers. These results indicate strong mineral controls on the decomposability of OM after permafrost thaw and on its temperature sensitivity. Thus, we here provide evidence that OM temperature sensitivity can be attenuated by MOA in permafrost soils.
650    _2
$a uhlík $x analýza $7 D002244
650    _2
$a klimatické změny $7 D057231
650    _2
$a minerály $x analýza $7 D008903
650    12
$a permafrost $7 D065946
650    _2
$a půda $x chemie $7 D012987
650    12
$a teplota $7 D013696
651    _2
$a Arktida $7 D001110
651    _2
$a Sibiř $7 D012800
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Wild, Birgit $u Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria. Austrian Polar Research Institute, Vienna, Austria. Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden. Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden.
700    1_
$a Mikutta, Robert $u Institute of Soil Science, Leibniz Universität Hannover, Hannover, Germany. Soil Science and Soil Protection, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.
700    1_
$a Čapek, Petr $u Department of Ecosystems Biology, University of South Bohemia, České Budéjovice, Czech Republic.
700    1_
$a Diáková, Katka $u Department of Ecosystems Biology, University of South Bohemia, České Budéjovice, Czech Republic.
700    1_
$a Schrumpf, Marion $u Max Planck Institute for Biogeochemistry, Jena, Germany.
700    1_
$a Turner, Stephanie $u Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany.
700    1_
$a Minnich, Cynthia $u Institute of Soil Science, Leibniz Universität Hannover, Hannover, Germany. Soil Ecology, University of Bayreuth, Bayreuth, Germany.
700    1_
$a Schaarschmidt, Frank $u Institute of Biostatistics, Leibniz Universität Hannover, Hannover, Germany.
700    1_
$a Shibistova, Olga $u Institute of Soil Science, Leibniz Universität Hannover, Hannover, Germany. V.N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russia.
700    1_
$a Schnecker, Jörg $u Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria. Austrian Polar Research Institute, Vienna, Austria. Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire.
700    1_
$a Urich, Tim $u Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria. Institute of Microbiology, Ernst-Moritz-Arndt University, Greifswald, Germany.
700    1_
$a Gittel, Antje $u Department of Biology, Centre for Geobiology, University of Bergen, Bergen, Norway. Department of Bioscience, Centre for Geomicrobiology, Aarhus, Denmark.
700    1_
$a Šantrůčková, Hana $u Department of Ecosystems Biology, University of South Bohemia, České Budéjovice, Czech Republic.
700    1_
$a Bárta, Jiři $u Department of Ecosystems Biology, University of South Bohemia, České Budéjovice, Czech Republic.
700    1_
$a Lashchinskiy, Nikolay $u Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.
700    1_
$a Fuß, Roland $u Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany.
700    1_
$a Richter, Andreas $u Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria. Austrian Polar Research Institute, Vienna, Austria.
700    1_
$a Guggenberger, Georg $u Institute of Soil Science, Leibniz Universität Hannover, Hannover, Germany. V.N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russia.
773    0_
$w MED00007661 $t Global change biology $x 1365-2486 $g Roč. 24, č. 8 (2018), s. 3401-3415
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29774972 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190405 $b ABA008
991    __
$a 20190409152701 $b ABA008
999    __
$a ok $b bmc $g 1391969 $s 1050964
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 24 $c 8 $d 3401-3415 $e 20180601 $i 1365-2486 $m Global change biology $n Glob Chang Biol $x MED00007661
LZP    __
$a Pubmed-20190405

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...