Perennially frozen soil, also known as permafrost, is important for the functioning and productivity of most of the boreal forest, the world's largest terrestrial biome. A better understanding of complex vegetation-permafrost interrelationships is needed to predict changes in local- to large-scale carbon, nutrient, and water cycle dynamics under future global warming. Here, we analyze tree-ring width and tree-ring stable isotope (C and O) measurements of Gmelin larch (Larix gmelinii (Rupr.) Rupr.) from six permafrost sites in the northern taiga of central Siberia. Our multi-parameter approach shows that changes in tree growth were predominantly controlled by the air and topsoil temperature and moisture content of the active soil and upper permafrost layers. The observed patterns range from strong growth limitations by early summer temperatures at higher elevations to significant growth controls by precipitation at warmer and well-drained lower-elevation sites. Enhanced radial tree growth is mainly found at sites with fast thawing upper mineral soil layers, and the comparison of tree-ring isotopes over five-year periods with different amounts of summer precipitation indicates that trees can prevent drought stress by accessing water from melted snow and seasonally frozen soil. Identifying the active soil and upper permafrost layers as central water resources for boreal tree growth during dry summers demonstrates the complexity of ecosystem responses to climatic changes.
- Klíčová slova
- Active soil layer, Boreal forest, Dendrochronology, Global warming, Siberia, Stable isotopes, Tree growth,
- MeSH
- ekosystém MeSH
- lesy MeSH
- období sucha MeSH
- permafrost * MeSH
- půda MeSH
- tajga MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- půda MeSH
Domesticated yaks endure as iconic symbols of high-altitude frozen landscapes, where herding communities depend on their high-fat milk, transport, dung, and natural fibers. While there is established proteomic evidence for ancient consumption of ruminant and horse milk in the mountains and steppes of northern Eurasia, yak dairy products have yet to be detected. Yak domestication and the species' dispersal from Tibet into the mountainous zones to the north are also poorly resolved due to a paucity of zooarchaeological data. To examine the potential of paleoproteomics to shed light on domesticated yak in Mongolia, we analyzed human dental calculus from Mongol era elite individuals recovered from permafrost burials in Khovsgol province, where people continue to herd yak to this day. We report the first evidence for yak dairy consumption, linked to local resource control. In addition, we confirm a large diversity of recovered whey, curd, tissue, and blood proteins, likely reflecting the excellent preservation conditions found at permafrost sites.
The physical and chemical changes that accompany permafrost thaw directly influence the microbial communities that mediate the decomposition of formerly frozen organic matter, leading to uncertainty in permafrost-climate feedbacks. Although changes to microbial metabolism and community structure are documented following thaw, the generality of post-thaw assembly patterns across permafrost soils of the world remains uncertain, limiting our ability to predict biogeochemistry and microbial community responses to climate change. Based on our review of the Arctic microbiome, permafrost microbiology, and community ecology, we propose that Assembly Theory provides a framework to better understand thaw-mediated microbiome changes and the implications for community function and climate feedbacks. This framework posits that the prevalence of deterministic or stochastic processes indicates whether the community is well-suited to thrive in changing environmental conditions. We predict that on a short timescale and following high-disturbance thaw (e.g., thermokarst), stochasticity dominates post-thaw microbiome assembly, suggesting that functional predictions will be aided by detailed information about the microbiome. At a longer timescale and lower-intensity disturbance (e.g., active layer deepening), deterministic processes likely dominate, making environmental parameters sufficient for predicting function. We propose that the contribution of stochastic and deterministic processes to post-thaw microbiome assembly depends on the characteristics of the thaw disturbance, as well as characteristics of the microbial community, such as the ecological and phylogenetic breadth of functional guilds, their functional redundancy, and biotic interactions. These propagate across space and time, potentially providing a means for predicting the microbial forcing of greenhouse gas feedbacks to global climate change.
- MeSH
- fylogeneze MeSH
- mikrobiota * MeSH
- permafrost * chemie MeSH
- půda chemie MeSH
- zpětná vazba MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Geografické názvy
- Arktida MeSH
- Názvy látek
- půda MeSH
In natural, permanently frozen habitats, some organisms may be preserved for hundreds to tens of thousands of years. For example, stems of Antarctic moss were successfully regrown from an over millennium-old sample covered by ice for about 400 years1. Likewise, whole campion plants were regenerated from seed tissue preserved in relict 32,000-year-old permafrost2, and nematodes were revived from the permafrost of two localities in northeastern Siberia, with source sediments dated over 30,000 years BP3. Bdelloid rotifers, microscopic multicellular animals, are known for their ability to survive extremely low temperatures4. Previous reports suggest survival after six to ten years when frozen between -20° to 0°C4-6. Here, we report the survival of an obligate parthenogenetic bdelloid rotifer, recovered from northeastern Siberian permafrost radiocarbon-dated to ∼24,000 years BP. This constitutes the longest reported case of rotifer survival in a frozen state. We confirmed the finding by identifying rotifer actin gene sequences in a metagenome obtained from the same sample. By morphological and molecular markers, the discovered rotifer belongs to the genus Adineta, and aligns with a contemporary Adineta vaga isolate collected in Belgium. Experiments demonstrated that the ancient rotifer withstands slow cooling and freezing (∼1°C min-1) for at least seven days. We also show that a clonal culture can continuously reproduce in the laboratory by parthenogenesis.
- MeSH
- metagenom MeSH
- partenogeneze MeSH
- permafrost * MeSH
- vířníci klasifikace genetika růst a vývoj izolace a purifikace MeSH
- zmrazování * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- dopisy MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Sibiř MeSH
Substantial amounts of topsoil organic matter (OM) in Arctic Cryosols have been translocated by the process of cryoturbation into deeper soil horizons (cryoOM), reducing its decomposition. Recent Arctic warming deepens the Cryosols´ active layer, making more topsoil and cryoOM carbon accessible for microbial transformation. To quantify bacteria, archaea and selected microbial groups (methanogens - mcrA gene and diazotrophs - nifH gene) and to investigate bacterial and archaeal diversity, we collected 83 soil samples from four different soil horizons of three distinct tundra types located in Qikiqtaruk (Hershel Island, Western Canada). In general, the abundance of bacteria and diazotrophs decreased from topsoil to permafrost, but not for cryoOM. No such difference was observed for archaea and methanogens. CryoOM was enriched with oligotrophic (slow-growing microorganism) taxa capable of recalcitrant OM degradation. We found distinct microbial patterns in each tundra type: topsoil from wet-polygonal tundra had the lowest abundance of bacteria and diazotrophs, but the highest abundance of methanogens. Wet-polygonal tundra, therefore, represented a hotspot for methanogenesis. Oligotrophic and copiotrophic (fast-growing microorganism) genera of methanogens and diazotrophs were distinctly distributed in topsoil and cryoOM, resulting in different rates of nitrogen flux into these horizons affecting OM vulnerability and potential CO2 and CH4 release.
- Klíčová slova
- arctic, climate change, gene abundance, microbial community, permafrost, vegetation,
- MeSH
- mikrobiota * MeSH
- ostrovy MeSH
- permafrost * MeSH
- půda MeSH
- půdní mikrobiologie MeSH
- tundra MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Arktida MeSH
- Kanada MeSH
- ostrovy MeSH
- Názvy látek
- půda MeSH
Permafrost controls geomorphological dynamics in maritime Antarctic ecosystems. Here, we analyze and model ground thermal regime in bordering conditions between continuous and discontinuous permafrost to better understand its relationship with the timing of glacial retreat. In February 2017, a transect including 10 sites for monitoring ground temperatures was installed in the eastern fringe of Byers Peninsula (Livingston Island, northern Antarctic Peninsula), together with one station recording air temperatures and snow thickness. The sites were selected following the Mid-Late Holocene deglaciation of the area at a distance ranging from 0.30 to 3.15 km from the current Rotch Dome glacier front. The transect provided data on the effects of topography, snow cover and the timing of ice-free exposure, on the ground thermal regime. From February 2017 to February 2019, the mean annual air temperature was -2.0 °C, which was >0.5 °C higher than 1986-2015 average in the Western Antarctic Peninsula region. Mean annual ground temperature at 10 cm depth varied between 0.3 and -1.1 °C, similar to the modelled Temperatures on the Top of the Permafrost (TTOP) that ranged from 0.06 ± 0.08 °C to -1.33 ± 0.07 °C. The positive average temperatures at the warmest site were related to the long-lasting presence of snow which favoured warmer ground temperatures and may trigger permafrost degradation. The role of other factors (topography, and timing of the deglaciation) explained intersite differences, but the overall effect was not as strong as snow cover.
- Klíčová slova
- Deglaciation, Ground thermal regime, Maritime Antarctica, Permafrostdistribution, Snow cover,
- MeSH
- ekosystém MeSH
- ledový příkrov MeSH
- ostrovy MeSH
- permafrost * MeSH
- teoretické modely * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Antarktida MeSH
- ostrovy MeSH
Although it has been recognized that rising temperatures and shifts in the hydrological cycle affect the depth of the seasonally thawing upper permafrost stratum, it remains unclear to what extent the frequency and intensity of wildfires, and subsequent changes in vegetation cover, influence the soil active layer on different spatiotemporal scales. Here, we use ring width measurements of the subterranean stem part of 15 larch trees from a Sphagnum bog site in Central Siberia to reconstruct long-term changes in the thickness of the active layer since the last wildfire occurred in 1899. Our approach reveals a three-step feedback loop between above- and belowground ecosystem components. After all vegetation is burned, direct atmospheric heat penetration over the first ~20 years caused thawing of the upper permafrost stratum. The slow recovery of the insulating ground vegetation reverses the process and initiates a gradual decrease of the active layer thickness. Due to the continuous spreading and thickening of the peat layer during the last decades, the upper permafrost horizon has increased by 0.52 cm/year. This study demonstrates the strength of annually resolved and absolutely dated tree-ring series to reconstruct the effects of historical wildfires on the functioning and productivity of boreal forest ecosystems at multi-decadal to centennial time-scale. In so doing, we show how complex interactions of above- and belowground components translate into successive changes in the active permafrost stratum. Our results are particularly relevant for improving long-term estimates of the global carbon cycle that strongly depends on the source and sink behavior of the boreal forest zone.
- Klíčová slova
- Boreal forest, Ecological interaction, Ecosystem response, Larix gmelinii, Seasonally thawing soil layer, Sphagnum,
- MeSH
- ekosystém MeSH
- koloběh uhlíku MeSH
- permafrost * MeSH
- požáry v divočině * MeSH
- půda MeSH
- rašeliníky MeSH
- stromy * MeSH
- tajga * MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Sibiř MeSH
- Názvy látek
- půda MeSH
Climate change in Arctic ecosystems fosters permafrost thaw and makes massive amounts of ancient soil organic carbon (OC) available to microbial breakdown. However, fractions of the organic matter (OM) may be protected from rapid decomposition by their association with minerals. Little is known about the effects of mineral-organic associations (MOA) on the microbial accessibility of OM in permafrost soils and it is not clear which factors control its temperature sensitivity. In order to investigate if and how permafrost soil OC turnover is affected by mineral controls, the heavy fraction (HF) representing mostly MOA was obtained by density fractionation from 27 permafrost soil profiles of the Siberian Arctic. In parallel laboratory incubations, the unfractionated soils (bulk) and their HF were comparatively incubated for 175 days at 5 and 15°C. The HF was equivalent to 70 ± 9% of the bulk CO2 respiration as compared to a share of 63 ± 1% of bulk OC that was stored in the HF. Significant reduction of OC mineralization was found in all treatments with increasing OC content of the HF (HF-OC), clay-size minerals and Fe or Al oxyhydroxides. Temperature sensitivity (Q10) decreased with increasing soil depth from 2.4 to 1.4 in the bulk soil and from 2.9 to 1.5 in the HF. A concurrent increase in the metal-to-HF-OC ratios with soil depth suggests a stronger bonding of OM to minerals in the subsoil. There, the younger 14 C signature in CO2 than that of the OC indicates a preferential decomposition of the more recent OM and the existence of a MOA fraction with limited access of OM to decomposers. These results indicate strong mineral controls on the decomposability of OM after permafrost thaw and on its temperature sensitivity. Thus, we here provide evidence that OM temperature sensitivity can be attenuated by MOA in permafrost soils.
- Klíčová slova
- carbon mineralization, incubation, mineral-organic association, permafrost soils, radiocarbon, temperature sensitivity,
- MeSH
- klimatické změny MeSH
- minerály analýza MeSH
- permafrost * MeSH
- půda chemie MeSH
- teplota * MeSH
- uhlík analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Arktida MeSH
- Sibiř MeSH
- Názvy látek
- minerály MeSH
- půda MeSH
- uhlík MeSH
Arctic peatlands store large stocks of organic carbon which are vulnerable to the climate change but their fate is uncertain. There is increasing evidence that a part of it will be lost as a result of faster microbial mineralization. We studied the vulnerability of 3500-5900 years old bare peat uplifted from permafrost layers by cryogenic processes to the surface of an arctic peat plateau. We aimed to find biotic and abiotic drivers of CLOSS from old peat and compare them with those of adjacent, young vegetated soils of the peat plateau and mineral tundra. The soils were incubated in laboratory at three temperatures (4°C, 12°C and 20°C) and two oxygen levels (aerobic, anaerobic). CLOSS was monitored and soil parameters (organic carbon quality, nutrient availability, microbial activity, biomass and stoichiometry, and extracellular oxidative and hydrolytic enzyme pools) were determined. We found that CLOSS from the old peat was constrained by low microbial biomass representing only 0.22% of organic carbon. CLOSS was only slightly reduced by the absence of oxygen and exponentially increased with temperature, showing the same temperature sensitivity under both aerobic and anaerobic conditions. We conclude that carbon in the old bare peat is stabilized by a combination of physical, chemical and biological controls including soil compaction, organic carbon quality, low microbial biomass and the absence of plants.
- Klíčová slova
- arctic peatlands, laboratory incubation, microbial biomass, oxygen, soil carbon loss, temperature,
- MeSH
- biomasa MeSH
- permafrost MeSH
- půda chemie MeSH
- půdní mikrobiologie MeSH
- teplota * MeSH
- tundra * MeSH
- uhlík analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Arktida MeSH
- Názvy látek
- půda MeSH
- uhlík MeSH