-
Je něco špatně v tomto záznamu ?
Structural patterns of the human ABCC4/MRP4 exporter in lipid bilayers rationalize clinically observed polymorphisms
B. Chantemargue, F. Di Meo, K. Berka, N. Picard, H. Arnion, M. Essig, P. Marquet, M. Otyepka, P. Trouillas,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- lipidové dvojvrstvy metabolismus MeSH
- molekulární modely * MeSH
- mutace MeSH
- polymorfismus genetický MeSH
- proteiny spojené s mnohočetnou rezistencí k lékům chemie fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The ABCC4/MRP4 exporter has a clinical impact on membrane transport of a broad range of xenobiotics. It is expressed at key locations for drug disposition or effects such as in the liver, the kidney and blood cells. Several polymorphisms and mutations (e.g., p.Gly187Trp) leading to MRP4 dysfunction are associated with an increased risk of toxicity of some drugs. So far, no human MRP4 structure has been elucidated, precluding rationalization of these dysfunctions at a molecular level. We constructed an atomistic model of the wild type (WT) MRP4 and the p.Gly187Trp mutant embedded in different lipid bilayers and relaxed them for hundreds of nanoseconds by molecular dynamics simulations. The WT MRP4 molecular structure confirmed and ameliorated the general knowledge about the transmembrane helices and the two nucleotide binding domains. Moreover, our model elucidated positions of three generally unresolved domains: L1 (linker between the two halves of the exporter); L0 (N-terminal domain); and the zipper helices (between the two NBDs). Each domain was thoroughly described in view of its function. The p.Gly187Trp mutation induced a huge structural impact on MRP4, mainly affecting NBD 1 structure and flexibility. The structure of transporter enabled rationalization of known dysfunctions associated with polymorphism of MRP4. This model is available to the pharmacology community to decipher the impact of any other clinically observed polymorphism and mutation on drug transport, giving rise to in silico predictive pharmacogenetics.
RCPTM Department of Physical Chemistry Fac Sciences Palacký University Olomouc Czech Republic
U1248 INSERM Univ Limoges Fac Pharmacy 2 rue du Dr Marcland 87025 Limoges France
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19012783
- 003
- CZ-PrNML
- 005
- 20190416121621.0
- 007
- ta
- 008
- 190405s2018 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.phrs.2018.02.029 $2 doi
- 035 __
- $a (PubMed)29530601
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Chantemargue, B $u U1248 INSERM, Univ. Limoges, Fac. Pharmacy, 2 rue du Dr Marcland, 87025, Limoges, France; RCPTM, Department of Physical Chemistry, Fac. Sciences, Palacký University, Olomouc, Czech Republic.
- 245 10
- $a Structural patterns of the human ABCC4/MRP4 exporter in lipid bilayers rationalize clinically observed polymorphisms / $c B. Chantemargue, F. Di Meo, K. Berka, N. Picard, H. Arnion, M. Essig, P. Marquet, M. Otyepka, P. Trouillas,
- 520 9_
- $a The ABCC4/MRP4 exporter has a clinical impact on membrane transport of a broad range of xenobiotics. It is expressed at key locations for drug disposition or effects such as in the liver, the kidney and blood cells. Several polymorphisms and mutations (e.g., p.Gly187Trp) leading to MRP4 dysfunction are associated with an increased risk of toxicity of some drugs. So far, no human MRP4 structure has been elucidated, precluding rationalization of these dysfunctions at a molecular level. We constructed an atomistic model of the wild type (WT) MRP4 and the p.Gly187Trp mutant embedded in different lipid bilayers and relaxed them for hundreds of nanoseconds by molecular dynamics simulations. The WT MRP4 molecular structure confirmed and ameliorated the general knowledge about the transmembrane helices and the two nucleotide binding domains. Moreover, our model elucidated positions of three generally unresolved domains: L1 (linker between the two halves of the exporter); L0 (N-terminal domain); and the zipper helices (between the two NBDs). Each domain was thoroughly described in view of its function. The p.Gly187Trp mutation induced a huge structural impact on MRP4, mainly affecting NBD 1 structure and flexibility. The structure of transporter enabled rationalization of known dysfunctions associated with polymorphism of MRP4. This model is available to the pharmacology community to decipher the impact of any other clinically observed polymorphism and mutation on drug transport, giving rise to in silico predictive pharmacogenetics.
- 650 _2
- $a lipidové dvojvrstvy $x metabolismus $7 D008051
- 650 12
- $a molekulární modely $7 D008958
- 650 _2
- $a proteiny spojené s mnohočetnou rezistencí k lékům $x chemie $x fyziologie $7 D027425
- 650 _2
- $a mutace $7 D009154
- 650 _2
- $a polymorfismus genetický $7 D011110
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Di Meo, F $u U1248 INSERM, Univ. Limoges, Fac. Pharmacy, 2 rue du Dr Marcland, 87025, Limoges, France. Electronic address: florent.di-meo@unilim.fr.
- 700 1_
- $a Berka, K $u RCPTM, Department of Physical Chemistry, Fac. Sciences, Palacký University, Olomouc, Czech Republic.
- 700 1_
- $a Picard, N $u U1248 INSERM, Univ. Limoges, Fac. Pharmacy, 2 rue du Dr Marcland, 87025, Limoges, France; Department of Pharmacology and Toxicology, CHU Limoges, Limoges University Hospital, Limoges Cedex, F-87042, France.
- 700 1_
- $a Arnion, H $u U1248 INSERM, Univ. Limoges, Fac. Pharmacy, 2 rue du Dr Marcland, 87025, Limoges, France.
- 700 1_
- $a Essig, M $u U1248 INSERM, Univ. Limoges, Fac. Pharmacy, 2 rue du Dr Marcland, 87025, Limoges, France.
- 700 1_
- $a Marquet, P $u U1248 INSERM, Univ. Limoges, Fac. Pharmacy, 2 rue du Dr Marcland, 87025, Limoges, France; Department of Pharmacology and Toxicology, CHU Limoges, Limoges University Hospital, Limoges Cedex, F-87042, France.
- 700 1_
- $a Otyepka, M $u RCPTM, Department of Physical Chemistry, Fac. Sciences, Palacký University, Olomouc, Czech Republic.
- 700 1_
- $a Trouillas, P $u U1248 INSERM, Univ. Limoges, Fac. Pharmacy, 2 rue du Dr Marcland, 87025, Limoges, France; RCPTM, Department of Physical Chemistry, Fac. Sciences, Palacký University, Olomouc, Czech Republic.
- 773 0_
- $w MED00005744 $t Pharmacological research $x 1096-1186 $g Roč. 133, č. - (2018), s. 318-327
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29530601 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190405 $b ABA008
- 991 __
- $a 20190416121647 $b ABA008
- 999 __
- $a ok $b bmc $g 1392093 $s 1051088
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 133 $c - $d 318-327 $e 20180310 $i 1096-1186 $m Pharmacological research $n Pharmacol Res $x MED00005744
- LZP __
- $a Pubmed-20190405