• Je něco špatně v tomto záznamu ?

The dynamics of error processing in the human brain as reflected by high-gamma activity in noninvasive and intracranial EEG

M. Völker, LDJ. Fiederer, S. Berberich, J. Hammer, J. Behncke, P. Kršek, M. Tomášek, P. Marusič, PC. Reinacher, VA. Coenen, M. Helias, A. Schulze-Bonhage, W. Burgard, T. Ball,

. 2018 ; 173 (-) : 564-579. [pub] 20180220

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19012811

Error detection in motor behavior is a fundamental cognitive function heavily relying on local cortical information processing. Neural activity in the high-gamma frequency band (HGB) closely reflects such local cortical processing, but little is known about its role in error processing, particularly in the healthy human brain. Here we characterize the error-related response of the human brain based on data obtained with noninvasive EEG optimized for HGB mapping in 31 healthy subjects (15 females, 16 males), and additional intracranial EEG data from 9 epilepsy patients (4 females, 5 males). Our findings reveal a multiscale picture of the global and local dynamics of error-related HGB activity in the human brain. On the global level as reflected in the noninvasive EEG, the error-related response started with an early component dominated by anterior brain regions, followed by a shift to parietal regions, and a subsequent phase characterized by sustained parietal HGB activity. This phase lasted for more than 1 s after the error onset. On the local level reflected in the intracranial EEG, a cascade of both transient and sustained error-related responses involved an even more extended network, spanning beyond frontal and parietal regions to the insula and the hippocampus. HGB mapping appeared especially well suited to investigate late, sustained components of the error response, possibly linked to downstream functional stages such as error-related learning and behavioral adaptation. Our findings establish the basic spatio-temporal properties of HGB activity as a neural correlate of error processing, complementing traditional error-related potential studies.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19012811
003      
CZ-PrNML
005      
20190418083212.0
007      
ta
008      
190405s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.neuroimage.2018.01.059 $2 doi
035    __
$a (PubMed)29471099
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Völker, Martin $u Translational Neurotechnology Lab, Medical Center - University of Freiburg, 79106, Freiburg, Germany; Graduate School of Robotics, University of Freiburg, 79106, Freiburg, Germany; Department of Computer Science, University of Freiburg, 79110, Freiburg, Germany; BrainLinks-BrainTools, University of Freiburg, 79110, Freiburg, Germany. Electronic address: martin.voelker@uniklinik-freiburg.de.
245    14
$a The dynamics of error processing in the human brain as reflected by high-gamma activity in noninvasive and intracranial EEG / $c M. Völker, LDJ. Fiederer, S. Berberich, J. Hammer, J. Behncke, P. Kršek, M. Tomášek, P. Marusič, PC. Reinacher, VA. Coenen, M. Helias, A. Schulze-Bonhage, W. Burgard, T. Ball,
520    9_
$a Error detection in motor behavior is a fundamental cognitive function heavily relying on local cortical information processing. Neural activity in the high-gamma frequency band (HGB) closely reflects such local cortical processing, but little is known about its role in error processing, particularly in the healthy human brain. Here we characterize the error-related response of the human brain based on data obtained with noninvasive EEG optimized for HGB mapping in 31 healthy subjects (15 females, 16 males), and additional intracranial EEG data from 9 epilepsy patients (4 females, 5 males). Our findings reveal a multiscale picture of the global and local dynamics of error-related HGB activity in the human brain. On the global level as reflected in the noninvasive EEG, the error-related response started with an early component dominated by anterior brain regions, followed by a shift to parietal regions, and a subsequent phase characterized by sustained parietal HGB activity. This phase lasted for more than 1 s after the error onset. On the local level reflected in the intracranial EEG, a cascade of both transient and sustained error-related responses involved an even more extended network, spanning beyond frontal and parietal regions to the insula and the hippocampus. HGB mapping appeared especially well suited to investigate late, sustained components of the error response, possibly linked to downstream functional stages such as error-related learning and behavioral adaptation. Our findings establish the basic spatio-temporal properties of HGB activity as a neural correlate of error processing, complementing traditional error-related potential studies.
650    _2
$a dospělí $7 D000328
650    _2
$a mozek $x fyziologie $7 D001921
650    _2
$a mapování mozku $x metody $7 D001931
650    _2
$a elektrokortikografie $7 D000069280
650    _2
$a elektroencefalografie $7 D004569
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a gama rytmus EEG $x fyziologie $7 D065818
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a mladý dospělý $7 D055815
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Fiederer, Lukas D J $u Translational Neurotechnology Lab, Medical Center - University of Freiburg, 79106, Freiburg, Germany; BrainLinks-BrainTools, University of Freiburg, 79110, Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany; Bernstein Center, University of Freiburg, 79104, Freiburg, Germany.
700    1_
$a Berberich, Sofie $u Translational Neurotechnology Lab, Medical Center - University of Freiburg, 79106, Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.
700    1_
$a Hammer, Jiří $u Translational Neurotechnology Lab, Medical Center - University of Freiburg, 79106, Freiburg, Germany; BrainLinks-BrainTools, University of Freiburg, 79110, Freiburg, Germany; Department of Neurology, 2nd Faculty of Medicine and Motol University Hospital, Charles University, 15006, Prague, Czech Republic.
700    1_
$a Behncke, Joos $u Translational Neurotechnology Lab, Medical Center - University of Freiburg, 79106, Freiburg, Germany; Department of Computer Science, University of Freiburg, 79110, Freiburg, Germany; BrainLinks-BrainTools, University of Freiburg, 79110, Freiburg, Germany.
700    1_
$a Kršek, Pavel $u Department of Paediatric Neurology, 2nd Faculty of Medicine and Motol University Hospital, Charles University, 15006, Prague, Czech Republic.
700    1_
$a Tomášek, Martin $u Department of Neurology, 2nd Faculty of Medicine and Motol University Hospital, Charles University, 15006, Prague, Czech Republic.
700    1_
$a Marusič, Petr $u Department of Neurology, 2nd Faculty of Medicine and Motol University Hospital, Charles University, 15006, Prague, Czech Republic.
700    1_
$a Reinacher, Peter C $u Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, 79106, Freiburg, Germany.
700    1_
$a Coenen, Volker A $u Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, 79106, Freiburg, Germany.
700    1_
$a Helias, Moritz $u Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), Jülich Research Centre and JARA, 52428, Jülich, Germany.
700    1_
$a Schulze-Bonhage, Andreas $u BrainLinks-BrainTools, University of Freiburg, 79110, Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; Epilepsy Center, Medical Center - University of Freiburg, 79106, Freiburg, Germany.
700    1_
$a Burgard, Wolfram $u Department of Computer Science, University of Freiburg, 79110, Freiburg, Germany; BrainLinks-BrainTools, University of Freiburg, 79110, Freiburg, Germany; Autonomous Intelligent Systems, University of Freiburg, 79110, Freiburg, Germany.
700    1_
$a Ball, Tonio $u Translational Neurotechnology Lab, Medical Center - University of Freiburg, 79106, Freiburg, Germany; BrainLinks-BrainTools, University of Freiburg, 79110, Freiburg, Germany; Bernstein Center, University of Freiburg, 79104, Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.
773    0_
$w MED00006575 $t NeuroImage $x 1095-9572 $g Roč. 173, č. - (2018), s. 564-579
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29471099 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190405 $b ABA008
991    __
$a 20190418083240 $b ABA008
999    __
$a ok $b bmc $g 1392121 $s 1051116
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 173 $c - $d 564-579 $e 20180220 $i 1095-9572 $m Neuroimage $n Neuroimage $x MED00006575
LZP    __
$a Pubmed-20190405

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...