-
Je něco špatně v tomto záznamu ?
Tick-borne pathogen detection: what's new
A. Cabezas-Cruz, M. Vayssier-Taussat, G. Greub,
Jazyk angličtina Země Francie
Typ dokumentu časopisecké články, přehledy
- MeSH
- Bacteria izolace a purifikace MeSH
- interakce hostitele a patogenu MeSH
- klíšťata mikrobiologie MeSH
- koinfekce mikrobiologie MeSH
- lidé MeSH
- mikrobiální interakce MeSH
- mikrobiota * MeSH
- nemoci přenášené klíšťaty diagnóza mikrobiologie MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Ticks and the pathogens they transmit constitute a growing burden for human and animal health worldwide. Traditionally, tick-borne pathogen detection has been carried out using PCR-based methods that rely in known sequences for specific primers design. This approach matches with the view of a 'single-pathogen' epidemiology. Recent results, however, have stressed the importance of coinfections in pathogen ecology and evolution with impact in pathogen transmission and disease severity. New approaches, including high-throughput technologies, were then used to detect multiple pathogens, but they all need a priori information on the pathogens to search. Thus, those approaches are biased, limited and conceal the complexity of pathogen ecology. Currently, next generation sequencing (NGS) is applied to tick-borne pathogen detection as well as to study the interactions between pathogenic and non-pathogenic microorganisms associated to ticks, the pathobiome. The use of NGS technologies have surfaced two major points: (i) ticks are associated to complex microbial communities and (ii) the relation between pathogens and microbiota is bidirectional. Notably, a new challenge emerges from NGS experiments, data analysis. Discovering associations among a high number of microorganisms is not trivial and therefore most current NGS studies report lists of microorganisms without further insights. An alternative to this is the combination of NGS with analytical tools such as network analysis to unravel the structure of microbial communities associated to ticks in different ecosystems.
Faculty of Science University of South Bohemia 37005 České Budějovice Czech Republic
Infectious Disease Service University Hospital 1011 Lausanne Switzerland
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19012917
- 003
- CZ-PrNML
- 005
- 20190416124008.0
- 007
- ta
- 008
- 190405s2018 fr f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.micinf.2017.12.015 $2 doi
- 035 __
- $a (PubMed)29329935
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a fr
- 100 1_
- $a Cabezas-Cruz, Alejandro $u UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France; Faculty of Science, University of South Bohemia, 37005, České Budějovice, Czech Republic; Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic.
- 245 10
- $a Tick-borne pathogen detection: what's new / $c A. Cabezas-Cruz, M. Vayssier-Taussat, G. Greub,
- 520 9_
- $a Ticks and the pathogens they transmit constitute a growing burden for human and animal health worldwide. Traditionally, tick-borne pathogen detection has been carried out using PCR-based methods that rely in known sequences for specific primers design. This approach matches with the view of a 'single-pathogen' epidemiology. Recent results, however, have stressed the importance of coinfections in pathogen ecology and evolution with impact in pathogen transmission and disease severity. New approaches, including high-throughput technologies, were then used to detect multiple pathogens, but they all need a priori information on the pathogens to search. Thus, those approaches are biased, limited and conceal the complexity of pathogen ecology. Currently, next generation sequencing (NGS) is applied to tick-borne pathogen detection as well as to study the interactions between pathogenic and non-pathogenic microorganisms associated to ticks, the pathobiome. The use of NGS technologies have surfaced two major points: (i) ticks are associated to complex microbial communities and (ii) the relation between pathogens and microbiota is bidirectional. Notably, a new challenge emerges from NGS experiments, data analysis. Discovering associations among a high number of microorganisms is not trivial and therefore most current NGS studies report lists of microorganisms without further insights. An alternative to this is the combination of NGS with analytical tools such as network analysis to unravel the structure of microbial communities associated to ticks in different ecosystems.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a Bacteria $x izolace a purifikace $7 D001419
- 650 _2
- $a koinfekce $x mikrobiologie $7 D060085
- 650 _2
- $a vysoce účinné nukleotidové sekvenování $7 D059014
- 650 _2
- $a interakce hostitele a patogenu $7 D054884
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mikrobiální interakce $7 D056265
- 650 12
- $a mikrobiota $7 D064307
- 650 _2
- $a nemoci přenášené klíšťaty $x diagnóza $x mikrobiologie $7 D017282
- 650 _2
- $a klíšťata $x mikrobiologie $7 D013987
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Vayssier-Taussat, Muriel $u UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France.
- 700 1_
- $a Greub, Gilbert $u Center for Research on Intracellular Bacteria, Institute of Microbiology, Faculty of Biology and Medicine, University of Lausanne and University Hospital, 1011, Lausanne, Switzerland; Infectious Disease Service, University Hospital, 1011, Lausanne, Switzerland. Electronic address: gilbert.greub@chuv.ch.
- 773 0_
- $w MED00006000 $t Microbes and infection $x 1769-714X $g Roč. 20, č. 7-8 (2018), s. 441-444
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29329935 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190405 $b ABA008
- 991 __
- $a 20190416124033 $b ABA008
- 999 __
- $a ok $b bmc $g 1392227 $s 1051222
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 20 $c 7-8 $d 441-444 $e 20180109 $i 1769-714X $m Microbes and infection $n Microbes Infect $x MED00006000
- LZP __
- $a Pubmed-20190405