• Je něco špatně v tomto záznamu ?

Tick-borne pathogen detection: what's new

A. Cabezas-Cruz, M. Vayssier-Taussat, G. Greub,

. 2018 ; 20 (7-8) : 441-444. [pub] 20180109

Jazyk angličtina Země Francie

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc19012917

Ticks and the pathogens they transmit constitute a growing burden for human and animal health worldwide. Traditionally, tick-borne pathogen detection has been carried out using PCR-based methods that rely in known sequences for specific primers design. This approach matches with the view of a 'single-pathogen' epidemiology. Recent results, however, have stressed the importance of coinfections in pathogen ecology and evolution with impact in pathogen transmission and disease severity. New approaches, including high-throughput technologies, were then used to detect multiple pathogens, but they all need a priori information on the pathogens to search. Thus, those approaches are biased, limited and conceal the complexity of pathogen ecology. Currently, next generation sequencing (NGS) is applied to tick-borne pathogen detection as well as to study the interactions between pathogenic and non-pathogenic microorganisms associated to ticks, the pathobiome. The use of NGS technologies have surfaced two major points: (i) ticks are associated to complex microbial communities and (ii) the relation between pathogens and microbiota is bidirectional. Notably, a new challenge emerges from NGS experiments, data analysis. Discovering associations among a high number of microorganisms is not trivial and therefore most current NGS studies report lists of microorganisms without further insights. An alternative to this is the combination of NGS with analytical tools such as network analysis to unravel the structure of microbial communities associated to ticks in different ecosystems.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19012917
003      
CZ-PrNML
005      
20190416124008.0
007      
ta
008      
190405s2018 fr f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.micinf.2017.12.015 $2 doi
035    __
$a (PubMed)29329935
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a fr
100    1_
$a Cabezas-Cruz, Alejandro $u UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France; Faculty of Science, University of South Bohemia, 37005, České Budějovice, Czech Republic; Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic.
245    10
$a Tick-borne pathogen detection: what's new / $c A. Cabezas-Cruz, M. Vayssier-Taussat, G. Greub,
520    9_
$a Ticks and the pathogens they transmit constitute a growing burden for human and animal health worldwide. Traditionally, tick-borne pathogen detection has been carried out using PCR-based methods that rely in known sequences for specific primers design. This approach matches with the view of a 'single-pathogen' epidemiology. Recent results, however, have stressed the importance of coinfections in pathogen ecology and evolution with impact in pathogen transmission and disease severity. New approaches, including high-throughput technologies, were then used to detect multiple pathogens, but they all need a priori information on the pathogens to search. Thus, those approaches are biased, limited and conceal the complexity of pathogen ecology. Currently, next generation sequencing (NGS) is applied to tick-borne pathogen detection as well as to study the interactions between pathogenic and non-pathogenic microorganisms associated to ticks, the pathobiome. The use of NGS technologies have surfaced two major points: (i) ticks are associated to complex microbial communities and (ii) the relation between pathogens and microbiota is bidirectional. Notably, a new challenge emerges from NGS experiments, data analysis. Discovering associations among a high number of microorganisms is not trivial and therefore most current NGS studies report lists of microorganisms without further insights. An alternative to this is the combination of NGS with analytical tools such as network analysis to unravel the structure of microbial communities associated to ticks in different ecosystems.
650    _2
$a zvířata $7 D000818
650    _2
$a Bacteria $x izolace a purifikace $7 D001419
650    _2
$a koinfekce $x mikrobiologie $7 D060085
650    _2
$a vysoce účinné nukleotidové sekvenování $7 D059014
650    _2
$a interakce hostitele a patogenu $7 D054884
650    _2
$a lidé $7 D006801
650    _2
$a mikrobiální interakce $7 D056265
650    12
$a mikrobiota $7 D064307
650    _2
$a nemoci přenášené klíšťaty $x diagnóza $x mikrobiologie $7 D017282
650    _2
$a klíšťata $x mikrobiologie $7 D013987
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
700    1_
$a Vayssier-Taussat, Muriel $u UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France.
700    1_
$a Greub, Gilbert $u Center for Research on Intracellular Bacteria, Institute of Microbiology, Faculty of Biology and Medicine, University of Lausanne and University Hospital, 1011, Lausanne, Switzerland; Infectious Disease Service, University Hospital, 1011, Lausanne, Switzerland. Electronic address: gilbert.greub@chuv.ch.
773    0_
$w MED00006000 $t Microbes and infection $x 1769-714X $g Roč. 20, č. 7-8 (2018), s. 441-444
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29329935 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190405 $b ABA008
991    __
$a 20190416124033 $b ABA008
999    __
$a ok $b bmc $g 1392227 $s 1051222
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 20 $c 7-8 $d 441-444 $e 20180109 $i 1769-714X $m Microbes and infection $n Microbes Infect $x MED00006000
LZP    __
$a Pubmed-20190405

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...