Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Multiway Array Decomposition of EEG Spectrum: Implications of Its Stability for the Exploration of Large-Scale Brain Networks

R. Mareček, M. Lamoš, R. Labounek, M. Bartoň, T. Slavíček, M. Mikl, I. Rektor, M. Brázdil,

. 2017 ; 29 (4) : 968-989. [pub] 20170117

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19013184

Multiway array decomposition methods have been shown to be promising statistical tools for identifying neural activity in the EEG spectrum. They blindly decompose the EEG spectrum into spatial-temporal-spectral patterns by taking into account inherent relationships among signals acquired at different frequencies and sensors. Our study evaluates the stability of spatial-temporal-spectral patterns derived by one particular method, parallel factor analysis (PARAFAC). We focused on patterns' stability over time and in population and divided the complete data set containing data from 50 healthy subjects into several subsets. Our results suggest that the patterns are highly stable in time, as well as among different subgroups of subjects. Further, we show with simultaneously acquired fMRI data that power fluctuations of some patterns have stable correspondence to hemodynamic fluctuations in large-scale brain networks. We did not find such correspondence for power fluctuations in standard frequency bands, the common way of dealing with EEG data. Altogether, our results suggest that PARAFAC is a suitable method for research in the field of large-scale brain networks and their manifestation in EEG signal.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19013184
003      
CZ-PrNML
005      
20190416121403.0
007      
ta
008      
190405s2017 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1162/NECO_a_00933 $2 doi
035    __
$a (PubMed)28095199
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Mareček, Radek $u Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic rmarec@med.muni.cz.
245    10
$a Multiway Array Decomposition of EEG Spectrum: Implications of Its Stability for the Exploration of Large-Scale Brain Networks / $c R. Mareček, M. Lamoš, R. Labounek, M. Bartoň, T. Slavíček, M. Mikl, I. Rektor, M. Brázdil,
520    9_
$a Multiway array decomposition methods have been shown to be promising statistical tools for identifying neural activity in the EEG spectrum. They blindly decompose the EEG spectrum into spatial-temporal-spectral patterns by taking into account inherent relationships among signals acquired at different frequencies and sensors. Our study evaluates the stability of spatial-temporal-spectral patterns derived by one particular method, parallel factor analysis (PARAFAC). We focused on patterns' stability over time and in population and divided the complete data set containing data from 50 healthy subjects into several subsets. Our results suggest that the patterns are highly stable in time, as well as among different subgroups of subjects. Further, we show with simultaneously acquired fMRI data that power fluctuations of some patterns have stable correspondence to hemodynamic fluctuations in large-scale brain networks. We did not find such correspondence for power fluctuations in standard frequency bands, the common way of dealing with EEG data. Altogether, our results suggest that PARAFAC is a suitable method for research in the field of large-scale brain networks and their manifestation in EEG signal.
650    _2
$a akustická stimulace $7 D000161
650    _2
$a dospělí $7 D000328
650    _2
$a zvířata $7 D000818
650    _2
$a mozek $x diagnostické zobrazování $x fyziologie $7 D001921
650    _2
$a mapování mozku $7 D001931
650    _2
$a mozkové vlny $x fyziologie $7 D058256
650    12
$a elektroencefalografie $7 D004569
650    _2
$a faktorová analýza statistická $7 D005163
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    12
$a počítačové zpracování obrazu $7 D007091
650    _2
$a magnetická rezonanční tomografie $7 D008279
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a nervové dráhy $x diagnostické zobrazování $x fyziologie $7 D009434
650    _2
$a kyslík $x krev $7 D010100
650    _2
$a světelná stimulace $7 D010775
650    _2
$a mladý dospělý $7 D055815
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Lamoš, Martin $u Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic, and Brno University of Technology, 60190 Brno, Czech Republic martin.lamos@ceitec.muni.cz.
700    1_
$a Labounek, René $u Brno University of Technology, 60190 Brno, Czech Republic, and Department of Neurology, Palacky University, 77515 Olomouc, Czech Republic xlabou01@stud.feec.vutbr.cz.
700    1_
$a Bartoň, Marek $u Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic marek.barton@ceitec.mumi.cz.
700    1_
$a Slavíček, Tomáš $u Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic, and Brno University of Technology, 60190 Brno, Czech Repulbic tomas.slavicek@ceitec.muni.cz.
700    1_
$a Mikl, Michal $u Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic michal.mikl@ceitec.muni.cz.
700    1_
$a Rektor, Ivan $u Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic ivan.rektor@ceitec.muni.cz.
700    1_
$a Brázdil, Milan $u Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic milan.brazdil@ceitec.muni.cz.
773    0_
$w MED00003480 $t Neural computation $x 1530-888X $g Roč. 29, č. 4 (2017), s. 968-989
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28095199 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190405 $b ABA008
991    __
$a 20190416121428 $b ABA008
999    __
$a ok $b bmc $g 1392494 $s 1051489
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 29 $c 4 $d 968-989 $e 20170117 $i 1530-888X $m Neural computation $n Neural Comput $x MED00003480
LZP    __
$a Pubmed-20190405

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...