-
Je něco špatně v tomto záznamu ?
Multiway Array Decomposition of EEG Spectrum: Implications of Its Stability for the Exploration of Large-Scale Brain Networks
R. Mareček, M. Lamoš, R. Labounek, M. Bartoň, T. Slavíček, M. Mikl, I. Rektor, M. Brázdil,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28095199
DOI
10.1162/neco_a_00933
Knihovny.cz E-zdroje
- MeSH
- akustická stimulace MeSH
- dospělí MeSH
- elektroencefalografie * MeSH
- faktorová analýza statistická MeSH
- kyslík krev MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mapování mozku MeSH
- mladý dospělý MeSH
- mozek diagnostické zobrazování fyziologie MeSH
- mozkové vlny fyziologie MeSH
- nervové dráhy diagnostické zobrazování fyziologie MeSH
- počítačové zpracování obrazu * MeSH
- světelná stimulace MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Multiway array decomposition methods have been shown to be promising statistical tools for identifying neural activity in the EEG spectrum. They blindly decompose the EEG spectrum into spatial-temporal-spectral patterns by taking into account inherent relationships among signals acquired at different frequencies and sensors. Our study evaluates the stability of spatial-temporal-spectral patterns derived by one particular method, parallel factor analysis (PARAFAC). We focused on patterns' stability over time and in population and divided the complete data set containing data from 50 healthy subjects into several subsets. Our results suggest that the patterns are highly stable in time, as well as among different subgroups of subjects. Further, we show with simultaneously acquired fMRI data that power fluctuations of some patterns have stable correspondence to hemodynamic fluctuations in large-scale brain networks. We did not find such correspondence for power fluctuations in standard frequency bands, the common way of dealing with EEG data. Altogether, our results suggest that PARAFAC is a suitable method for research in the field of large-scale brain networks and their manifestation in EEG signal.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19013184
- 003
- CZ-PrNML
- 005
- 20190416121403.0
- 007
- ta
- 008
- 190405s2017 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1162/NECO_a_00933 $2 doi
- 035 __
- $a (PubMed)28095199
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Mareček, Radek $u Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic rmarec@med.muni.cz.
- 245 10
- $a Multiway Array Decomposition of EEG Spectrum: Implications of Its Stability for the Exploration of Large-Scale Brain Networks / $c R. Mareček, M. Lamoš, R. Labounek, M. Bartoň, T. Slavíček, M. Mikl, I. Rektor, M. Brázdil,
- 520 9_
- $a Multiway array decomposition methods have been shown to be promising statistical tools for identifying neural activity in the EEG spectrum. They blindly decompose the EEG spectrum into spatial-temporal-spectral patterns by taking into account inherent relationships among signals acquired at different frequencies and sensors. Our study evaluates the stability of spatial-temporal-spectral patterns derived by one particular method, parallel factor analysis (PARAFAC). We focused on patterns' stability over time and in population and divided the complete data set containing data from 50 healthy subjects into several subsets. Our results suggest that the patterns are highly stable in time, as well as among different subgroups of subjects. Further, we show with simultaneously acquired fMRI data that power fluctuations of some patterns have stable correspondence to hemodynamic fluctuations in large-scale brain networks. We did not find such correspondence for power fluctuations in standard frequency bands, the common way of dealing with EEG data. Altogether, our results suggest that PARAFAC is a suitable method for research in the field of large-scale brain networks and their manifestation in EEG signal.
- 650 _2
- $a akustická stimulace $7 D000161
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a mozek $x diagnostické zobrazování $x fyziologie $7 D001921
- 650 _2
- $a mapování mozku $7 D001931
- 650 _2
- $a mozkové vlny $x fyziologie $7 D058256
- 650 12
- $a elektroencefalografie $7 D004569
- 650 _2
- $a faktorová analýza statistická $7 D005163
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a počítačové zpracování obrazu $7 D007091
- 650 _2
- $a magnetická rezonanční tomografie $7 D008279
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a nervové dráhy $x diagnostické zobrazování $x fyziologie $7 D009434
- 650 _2
- $a kyslík $x krev $7 D010100
- 650 _2
- $a světelná stimulace $7 D010775
- 650 _2
- $a mladý dospělý $7 D055815
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Lamoš, Martin $u Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic, and Brno University of Technology, 60190 Brno, Czech Republic martin.lamos@ceitec.muni.cz.
- 700 1_
- $a Labounek, René $u Brno University of Technology, 60190 Brno, Czech Republic, and Department of Neurology, Palacky University, 77515 Olomouc, Czech Republic xlabou01@stud.feec.vutbr.cz.
- 700 1_
- $a Bartoň, Marek $u Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic marek.barton@ceitec.mumi.cz.
- 700 1_
- $a Slavíček, Tomáš $u Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic, and Brno University of Technology, 60190 Brno, Czech Repulbic tomas.slavicek@ceitec.muni.cz.
- 700 1_
- $a Mikl, Michal $u Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic michal.mikl@ceitec.muni.cz.
- 700 1_
- $a Rektor, Ivan $u Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic ivan.rektor@ceitec.muni.cz.
- 700 1_
- $a Brázdil, Milan $u Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic milan.brazdil@ceitec.muni.cz.
- 773 0_
- $w MED00003480 $t Neural computation $x 1530-888X $g Roč. 29, č. 4 (2017), s. 968-989
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28095199 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190405 $b ABA008
- 991 __
- $a 20190416121428 $b ABA008
- 999 __
- $a ok $b bmc $g 1392494 $s 1051489
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 29 $c 4 $d 968-989 $e 20170117 $i 1530-888X $m Neural computation $n Neural Comput $x MED00003480
- LZP __
- $a Pubmed-20190405