• Je něco špatně v tomto záznamu ?

Bimolecular Nucleophilic Substitution Reactions: Predictive Models for Rate Constants and Molecular Reaction Pairs Analysis

T. Gimadiev, T. Madzhidov, I. Tetko, R. Nugmanov, I. Casciuc, O. Klimchuk, A. Bodrov, P. Polishchuk, I. Antipin, A. Varnek,

. 2019 ; 38 (4) : e1800104. [pub] 20181123

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19028049

Here, we report the data visualization, analysis and modeling for a large set of 4830 SN 2 reactions the rate constant of which (logk) was measured at different experimental conditions (solvent, temperature). The reactions were encoded by one single molecular graph - Condensed Graph of Reactions, which allowed us to use conventional chemoinformatics techniques developed for individual molecules. Thus, Matched Reaction Pairs approach was suggested and used for the analyses of substituents effects on the substrates and nucleophiles reactivity. The data were visualized with the help of the Generative Topographic Mapping approach. Consensus Support Vector Regression (SVR) model for the rate constant was prepared. Unbiased estimation of the model's performance was made in cross-validation on reactions measured on unique structural transformations. The model's performance in cross-validation (RMSE=0.61 logk units) and on the external test set (RMSE=0.80) is close to the noise in data. Performances of the local models obtained for selected subsets of reactions proceeding in particular solvents or with particular type of nucleophiles were similar to that of the model built on the entire set. Finally, four different definitions of model's applicability domains for reactions were examined.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19028049
003      
CZ-PrNML
005      
20190917125120.0
007      
ta
008      
190813s2019 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1002/minf.201800104 $2 doi
035    __
$a (PubMed)30468317
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Gimadiev, Timur $u Laboratory of Chemoinformatics and Molecular Modeling, Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya str. 18, Kazan, Russia. Laboratoire de Chémoinformatique, UMR 7140 CNRS, Université de Strasbourg, 1, rue Blaise Pascal, 67000, Strasbourg, France.
245    10
$a Bimolecular Nucleophilic Substitution Reactions: Predictive Models for Rate Constants and Molecular Reaction Pairs Analysis / $c T. Gimadiev, T. Madzhidov, I. Tetko, R. Nugmanov, I. Casciuc, O. Klimchuk, A. Bodrov, P. Polishchuk, I. Antipin, A. Varnek,
520    9_
$a Here, we report the data visualization, analysis and modeling for a large set of 4830 SN 2 reactions the rate constant of which (logk) was measured at different experimental conditions (solvent, temperature). The reactions were encoded by one single molecular graph - Condensed Graph of Reactions, which allowed us to use conventional chemoinformatics techniques developed for individual molecules. Thus, Matched Reaction Pairs approach was suggested and used for the analyses of substituents effects on the substrates and nucleophiles reactivity. The data were visualized with the help of the Generative Topographic Mapping approach. Consensus Support Vector Regression (SVR) model for the rate constant was prepared. Unbiased estimation of the model's performance was made in cross-validation on reactions measured on unique structural transformations. The model's performance in cross-validation (RMSE=0.61 logk units) and on the external test set (RMSE=0.80) is close to the noise in data. Performances of the local models obtained for selected subsets of reactions proceeding in particular solvents or with particular type of nucleophiles were similar to that of the model built on the entire set. Finally, four different definitions of model's applicability domains for reactions were examined.
650    _2
$a cyklické uhlovodíky $x chemie $7 D006844
650    _2
$a kinetika $7 D007700
650    12
$a chemické modely $7 D008956
650    _2
$a oxidace-redukce $7 D010084
650    12
$a support vector machine $7 D060388
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Madzhidov, Timur $u Laboratory of Chemoinformatics and Molecular Modeling, Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya str. 18, Kazan, Russia.
700    1_
$a Tetko, Igor $u Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Structural Biology, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.
700    1_
$a Nugmanov, Ramil $u Laboratory of Chemoinformatics and Molecular Modeling, Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya str. 18, Kazan, Russia.
700    1_
$a Casciuc, Iury $u Laboratoire de Chémoinformatique, UMR 7140 CNRS, Université de Strasbourg, 1, rue Blaise Pascal, 67000, Strasbourg, France.
700    1_
$a Klimchuk, Olga $u Laboratoire de Chémoinformatique, UMR 7140 CNRS, Université de Strasbourg, 1, rue Blaise Pascal, 67000, Strasbourg, France.
700    1_
$a Bodrov, Andrey $u Laboratory of Chemoinformatics and Molecular Modeling, Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya str. 18, Kazan, Russia. Department of General and Organic Chemistry, Kazan State Medical University, Kazan, Russia.
700    1_
$a Polishchuk, Pavel $u Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic.
700    1_
$a Antipin, Igor $u Laboratory of Chemoinformatics and Molecular Modeling, Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya str. 18, Kazan, Russia.
700    1_
$a Varnek, Alexandre $u Laboratoire de Chémoinformatique, UMR 7140 CNRS, Université de Strasbourg, 1, rue Blaise Pascal, 67000, Strasbourg, France.
773    0_
$w MED00200174 $t Molecular informatics $x 1868-1751 $g Roč. 38, č. 4 (2019), s. e1800104
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30468317 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190813 $b ABA008
991    __
$a 20190917125509 $b ABA008
999    __
$a ok $b bmc $g 1433198 $s 1066509
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 38 $c 4 $d e1800104 $e 20181123 $i 1868-1751 $m Molecular informatics $n Mol Inform $x MED00200174
LZP    __
$a Pubmed-20190813

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...