Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Long-read sequencing technology indicates genome-wide effects of non-B DNA on polymerization speed and error rate

WM. Guiblet, MA. Cremona, M. Cechova, RS. Harris, I. Kejnovská, E. Kejnovsky, K. Eckert, F. Chiaromonte, KD. Makova,

. 2018 ; 28 (12) : 1767-1778. [pub] 20181106

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

E-resources Online Full text

NLK Free Medical Journals from 1991 to 6 months ago
Freely Accessible Science Journals from 1991-08-01 to 1 year ago
PubMed Central from 1997 to 6 months ago
Europe PubMed Central from 1997 to 6 months ago
Open Access Digital Library from 1991-08-01
Open Access Digital Library from 1991-08-01

DNA conformation may deviate from the classical B-form in ∼13% of the human genome. Non-B DNA regulates many cellular processes; however, its effects on DNA polymerization speed and accuracy have not been investigated genome-wide. Such an inquiry is critical for understanding neurological diseases and cancer genome instability. Here, we present the first simultaneous examination of DNA polymerization kinetics and errors in the human genome sequenced with Single-Molecule Real-Time (SMRT) technology. We show that polymerization speed differs between non-B and B-DNA: It decelerates at G-quadruplexes and fluctuates periodically at disease-causing tandem repeats. Analyzing polymerization kinetics profiles, we predict and validate experimentally non-B DNA formation for a novel motif. We demonstrate that several non-B motifs affect sequencing errors (e.g., G-quadruplexes increase error rates), and that sequencing errors are positively associated with polymerase slowdown. Finally, we show that highly divergent G4 motifs have pronounced polymerization slowdown and high sequencing error rates, suggesting similar mechanisms for sequencing errors and germline mutations.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19028109
003      
CZ-PrNML
005      
20190819113533.0
007      
ta
008      
190813s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1101/gr.241257.118 $2 doi
035    __
$a (PubMed)30401733
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Guiblet, Wilfried M $u Bioinformatics and Genomics Graduate Program, Penn State University, University Park, Pennsylvania 16802, USA.
245    10
$a Long-read sequencing technology indicates genome-wide effects of non-B DNA on polymerization speed and error rate / $c WM. Guiblet, MA. Cremona, M. Cechova, RS. Harris, I. Kejnovská, E. Kejnovsky, K. Eckert, F. Chiaromonte, KD. Makova,
520    9_
$a DNA conformation may deviate from the classical B-form in ∼13% of the human genome. Non-B DNA regulates many cellular processes; however, its effects on DNA polymerization speed and accuracy have not been investigated genome-wide. Such an inquiry is critical for understanding neurological diseases and cancer genome instability. Here, we present the first simultaneous examination of DNA polymerization kinetics and errors in the human genome sequenced with Single-Molecule Real-Time (SMRT) technology. We show that polymerization speed differs between non-B and B-DNA: It decelerates at G-quadruplexes and fluctuates periodically at disease-causing tandem repeats. Analyzing polymerization kinetics profiles, we predict and validate experimentally non-B DNA formation for a novel motif. We demonstrate that several non-B motifs affect sequencing errors (e.g., G-quadruplexes increase error rates), and that sequencing errors are positively associated with polymerase slowdown. Finally, we show that highly divergent G4 motifs have pronounced polymerization slowdown and high sequencing error rates, suggesting similar mechanisms for sequencing errors and germline mutations.
650    _2
$a DNA $x chemie $7 D004247
650    _2
$a replikace DNA $7 D004261
650    _2
$a G-kvadruplexy $7 D054856
650    12
$a genomika $x metody $x normy $7 D023281
650    12
$a vysoce účinné nukleotidové sekvenování $x metody $x normy $7 D059014
650    _2
$a lidé $7 D006801
650    _2
$a kinetika $7 D007700
650    _2
$a mutace $7 D009154
650    12
$a konformace nukleové kyseliny $7 D009690
650    _2
$a nukleotidové motivy $7 D059372
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    12
$a sekvenční analýza DNA $x metody $7 D017422
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Cremona, Marzia A $u Department of Statistics, Penn State University, University Park, Pennsylvania 16802, USA.
700    1_
$a Cechova, Monika $u Department of Biology, Penn State University, University Park, Pennsylvania 16802, USA.
700    1_
$a Harris, Robert S $u Department of Biology, Penn State University, University Park, Pennsylvania 16802, USA.
700    1_
$a Kejnovská, Iva $u Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.
700    1_
$a Kejnovsky, Eduard $u Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.
700    1_
$a Eckert, Kristin $u Department of Pathology, Penn State University, College of Medicine, Hershey, Pennsylvania 17033, USA.
700    1_
$a Chiaromonte, Francesca $u Department of Statistics, Penn State University, University Park, Pennsylvania 16802, USA. Sant'Anna School of Advanced Studies, 56127 Pisa, Italy.
700    1_
$a Makova, Kateryna D $u Department of Biology, Penn State University, University Park, Pennsylvania 16802, USA.
773    0_
$w MED00001911 $t Genome research $x 1549-5469 $g Roč. 28, č. 12 (2018), s. 1767-1778
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30401733 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190813 $b ABA008
991    __
$a 20190819113807 $b ABA008
999    __
$a ok $b bmc $g 1433258 $s 1066569
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 28 $c 12 $d 1767-1778 $e 20181106 $i 1549-5469 $m Genome research $n Genome Res $x MED00001911
LZP    __
$a Pubmed-20190813

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...