• Something wrong with this record ?

Biomechanical Characterization of Human Pluripotent Stem Cell-Derived Cardiomyocytes by Use of Atomic Force Microscopy

J. Pribyl, M. Pešl, G. Caluori, I. Acimovic, S. Jelinkova, P. Dvorak, P. Skladal, V. Rotrekl,

. 2019 ; 1886 (-) : 343-353. [pub] -

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

Atomic force microscopy (AFM) is not only a high-resolution imaging technique but also a sensitive tool able to study biomechanical properties of bio-samples (biomolecules, cells) in native conditions-i.e., in buffered solutions (culturing media) and stable temperature (mostly 37 °C). Micromechanical transducers (cantilevers) are often used to map surface stiffness distribution, adhesion forces, and viscoelastic parameters of living cells; however, they can also be used to monitor time course of cardiomyocytes contraction dynamics (e.g. beating rate, relaxation time), together with other biomechanical properties. Here we describe the construction of an AFM-based biosensor setup designed to study the biomechanical properties of cardiomyocyte clusters, through the use of standard uncoated silicon nitride cantilevers. Force-time curves (mechanocardiograms, MCG) are recorded continuously in real time and in the presence of cardiomyocyte-contraction affecting drugs (e.g., isoproterenol, metoprolol) in the medium, under physiological conditions. The average value of contraction force and the beat rate, as basic biomechanical parameters, represent pharmacological indicators of different phenotype features. Robustness, low computational requirements, and optimal spatial sensitivity (detection limit 200 pN, respectively 20 nm displacement) are the main advantages of the presented method.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19028126
003      
CZ-PrNML
005      
20240305152936.0
007      
ta
008      
190813s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1007/978-1-4939-8894-5_20 $2 doi
035    __
$a (PubMed)30374878
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Pribyl, Jan $u CEITEC MU, Masaryk University, Brno, Czech Republic.
245    10
$a Biomechanical Characterization of Human Pluripotent Stem Cell-Derived Cardiomyocytes by Use of Atomic Force Microscopy / $c J. Pribyl, M. Pešl, G. Caluori, I. Acimovic, S. Jelinkova, P. Dvorak, P. Skladal, V. Rotrekl,
520    9_
$a Atomic force microscopy (AFM) is not only a high-resolution imaging technique but also a sensitive tool able to study biomechanical properties of bio-samples (biomolecules, cells) in native conditions-i.e., in buffered solutions (culturing media) and stable temperature (mostly 37 °C). Micromechanical transducers (cantilevers) are often used to map surface stiffness distribution, adhesion forces, and viscoelastic parameters of living cells; however, they can also be used to monitor time course of cardiomyocytes contraction dynamics (e.g. beating rate, relaxation time), together with other biomechanical properties. Here we describe the construction of an AFM-based biosensor setup designed to study the biomechanical properties of cardiomyocyte clusters, through the use of standard uncoated silicon nitride cantilevers. Force-time curves (mechanocardiograms, MCG) are recorded continuously in real time and in the presence of cardiomyocyte-contraction affecting drugs (e.g., isoproterenol, metoprolol) in the medium, under physiological conditions. The average value of contraction force and the beat rate, as basic biomechanical parameters, represent pharmacological indicators of different phenotype features. Robustness, low computational requirements, and optimal spatial sensitivity (detection limit 200 pN, respectively 20 nm displacement) are the main advantages of the presented method.
650    12
$a biomechanika $7 D001696
650    _2
$a biosenzitivní techniky $7 D015374
650    _2
$a preklinické hodnocení léčiv $7 D004353
650    _2
$a lidé $7 D006801
650    12
$a mikroskopie atomárních sil $x přístrojové vybavení $x metody $7 D018625
650    _2
$a kardiomyocyty $x cytologie $7 D032383
650    _2
$a pluripotentní kmenové buňky $x cytologie $7 D039904
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Pešl, Martin $u Faculty of Medicine, Department of Biology, Masaryk University, Brno, Czech Republic. ICRC, St. Anne's University Hospital, Brno, Czech Republic. Faculty of Medicine, First Department of Internal Medicine-Cardioangiology, Masaryk University, Brno, Czech Republic.
700    1_
$a Caluori, Guido $u CEITEC MU, Masaryk University, Brno, Czech Republic. ICRC, St. Anne's University Hospital, Brno, Czech Republic.
700    1_
$a Aćimović, Ivana $u Faculty of Medicine, Department of Biology, Masaryk University, Brno, Czech Republic. $7 xx0314769
700    1_
$a Jelinkova, Sarka $u Faculty of Medicine, Department of Biology, Masaryk University, Brno, Czech Republic.
700    1_
$a Dvorak, Petr $u Faculty of Medicine, Department of Biology, Masaryk University, Brno, Czech Republic. ICRC, St. Anne's University Hospital, Brno, Czech Republic.
700    1_
$a Skladal, Petr $u CEITEC MU, Masaryk University, Brno, Czech Republic.
700    1_
$a Rotrekl, Vladimir $u Faculty of Medicine, Department of Biology, Masaryk University, Brno, Czech Republic. vrotrekl@med.muni.cz. ICRC, St. Anne's University Hospital, Brno, Czech Republic. vrotrekl@med.muni.cz.
773    0_
$w MED00180389 $t Methods in molecular biology $x 1940-6029 $g Roč. 1886 (2019), s. 343-353
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30374878 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190813 $b ABA008
991    __
$a 20240305152933 $b ABA008
999    __
$a ok $b bmc $g 1433275 $s 1066586
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 1886 $c - $d 343-353 $e - $i 1940-6029 $m Methods in molecular biology $n Methods Mol Biol $x MED00180389
LZP    __
$a Pubmed-20190813

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...