-
Je něco špatně v tomto záznamu ?
Defining Dynamics of Membrane-Bound Pyrophosphatases by Experimental and Computational Single-Molecule FRET
SPD. Harborne, J. Strauss, A. Turku, MA. Watson, R. Tuma, SA. Harris, A. Goldman,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/M021610/1
Biotechnology and Biological Sciences Research Council - United Kingdom
- MeSH
- bakteriální proteiny chemie genetika izolace a purifikace metabolismus MeSH
- buněčná membrána metabolismus MeSH
- enzymatické testy přístrojové vybavení metody MeSH
- fluorescenční barviva chemie MeSH
- fluorescenční mikroskopie přístrojové vybavení metody MeSH
- mutageneze MeSH
- protozoální proteiny chemie genetika izolace a purifikace metabolismus MeSH
- pyrofosfatasy chemie genetika izolace a purifikace metabolismus MeSH
- racionální návrh léčiv MeSH
- rekombinantní proteiny chemie genetika izolace a purifikace metabolismus MeSH
- rezonanční přenos fluorescenční energie přístrojové vybavení metody MeSH
- Saccharomyces cerevisiae MeSH
- sekvenční seřazení MeSH
- simulace molekulární dynamiky * MeSH
- software MeSH
- zobrazení jednotlivé molekuly přístrojové vybavení metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Membrane-bound pyrophosphatases couple the hydrolysis of inorganic pyrophosphate to the pumping of ions (sodium or protons) across a membrane in order to generate an electrochemical gradient. This class of membrane protein is widely conserved across plants, fungi, archaea, and bacteria, but absent in multicellular animals, making them a viable target for drug design against protozoan parasites such as Plasmodium falciparum. An excellent understanding of many of the catalytic states throughout the enzymatic cycle has already been afforded by crystallography. However, the dynamics and kinetics of the catalytic cycle between these static snapshots remain to be elucidated. Here, we employ single-molecule Förster resonance energy transfer (FRET) measurements to determine the dynamic range and frequency of conformations available to the enzyme in a lipid bilayer during the catalytic cycle. First, we explore issues related to the introduction of fluorescent dyes by cysteine mutagenesis; we discuss the importance of residue selection for dye attachment, and the balance between mutating areas of the protein that will provide useful dynamics while not altering highly conserved residues that could disrupt protein function. To complement and guide the experiments, we used all-atom molecular dynamics simulations and computational methods to estimate FRET efficiency distributions for dye pairs at different sites in different protein conformational states. We present preliminary single-molecule FRET data that points to insights about the binding modes of different membrane-bound pyrophosphatase substrates and inhibitors.
Astbury Centre for Structural Molecular Biology University of Leeds Leeds United Kingdom
Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19028249
- 003
- CZ-PrNML
- 005
- 20190823095940.0
- 007
- ta
- 008
- 190813s2018 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/bs.mie.2018.04.017 $2 doi
- 035 __
- $a (PubMed)30149870
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Harborne, Steven P D $u Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.
- 245 10
- $a Defining Dynamics of Membrane-Bound Pyrophosphatases by Experimental and Computational Single-Molecule FRET / $c SPD. Harborne, J. Strauss, A. Turku, MA. Watson, R. Tuma, SA. Harris, A. Goldman,
- 520 9_
- $a Membrane-bound pyrophosphatases couple the hydrolysis of inorganic pyrophosphate to the pumping of ions (sodium or protons) across a membrane in order to generate an electrochemical gradient. This class of membrane protein is widely conserved across plants, fungi, archaea, and bacteria, but absent in multicellular animals, making them a viable target for drug design against protozoan parasites such as Plasmodium falciparum. An excellent understanding of many of the catalytic states throughout the enzymatic cycle has already been afforded by crystallography. However, the dynamics and kinetics of the catalytic cycle between these static snapshots remain to be elucidated. Here, we employ single-molecule Förster resonance energy transfer (FRET) measurements to determine the dynamic range and frequency of conformations available to the enzyme in a lipid bilayer during the catalytic cycle. First, we explore issues related to the introduction of fluorescent dyes by cysteine mutagenesis; we discuss the importance of residue selection for dye attachment, and the balance between mutating areas of the protein that will provide useful dynamics while not altering highly conserved residues that could disrupt protein function. To complement and guide the experiments, we used all-atom molecular dynamics simulations and computational methods to estimate FRET efficiency distributions for dye pairs at different sites in different protein conformational states. We present preliminary single-molecule FRET data that points to insights about the binding modes of different membrane-bound pyrophosphatase substrates and inhibitors.
- 650 _2
- $a bakteriální proteiny $x chemie $x genetika $x izolace a purifikace $x metabolismus $7 D001426
- 650 _2
- $a buněčná membrána $x metabolismus $7 D002462
- 650 _2
- $a racionální návrh léčiv $7 D015195
- 650 _2
- $a enzymatické testy $x přístrojové vybavení $x metody $7 D057075
- 650 _2
- $a rezonanční přenos fluorescenční energie $x přístrojové vybavení $x metody $7 D031541
- 650 _2
- $a fluorescenční barviva $x chemie $7 D005456
- 650 _2
- $a fluorescenční mikroskopie $x přístrojové vybavení $x metody $7 D008856
- 650 12
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a mutageneze $7 D016296
- 650 _2
- $a protozoální proteiny $x chemie $x genetika $x izolace a purifikace $x metabolismus $7 D015800
- 650 _2
- $a pyrofosfatasy $x chemie $x genetika $x izolace a purifikace $x metabolismus $7 D011755
- 650 _2
- $a rekombinantní proteiny $x chemie $x genetika $x izolace a purifikace $x metabolismus $7 D011994
- 650 _2
- $a Saccharomyces cerevisiae $7 D012441
- 650 _2
- $a sekvenční seřazení $7 D016415
- 650 _2
- $a zobrazení jednotlivé molekuly $x přístrojové vybavení $x metody $7 D000072760
- 650 _2
- $a software $7 D012984
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Strauss, Jannik $u Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.
- 700 1_
- $a Turku, Ainoleena $u Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
- 700 1_
- $a Watson, Matthew A $u Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.
- 700 1_
- $a Tuma, Roman $u Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
- 700 1_
- $a Harris, Sarah A $u Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.
- 700 1_
- $a Goldman, Adrian $u Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland. Electronic address: a.goldman@leeds.ac.uk.
- 773 0_
- $w MED00008502 $t Methods in enzymology $x 1557-7988 $g Roč. 607, č. - (2018), s. 93-130
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30149870 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190813 $b ABA008
- 991 __
- $a 20190823100155 $b ABA008
- 999 __
- $a ok $b bmc $g 1433398 $s 1066709
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 607 $c - $d 93-130 $e - $i 1557-7988 $m Methods in enzymology $n Methods Enzymol $x MED00008502
- GRA __
- $a BB/M021610/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
- LZP __
- $a Pubmed-20190813