• Je něco špatně v tomto záznamu ?

Defining Dynamics of Membrane-Bound Pyrophosphatases by Experimental and Computational Single-Molecule FRET

SPD. Harborne, J. Strauss, A. Turku, MA. Watson, R. Tuma, SA. Harris, A. Goldman,

. 2018 ; 607 (-) : 93-130. [pub] -

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19028249

Grantová podpora
BB/M021610/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Membrane-bound pyrophosphatases couple the hydrolysis of inorganic pyrophosphate to the pumping of ions (sodium or protons) across a membrane in order to generate an electrochemical gradient. This class of membrane protein is widely conserved across plants, fungi, archaea, and bacteria, but absent in multicellular animals, making them a viable target for drug design against protozoan parasites such as Plasmodium falciparum. An excellent understanding of many of the catalytic states throughout the enzymatic cycle has already been afforded by crystallography. However, the dynamics and kinetics of the catalytic cycle between these static snapshots remain to be elucidated. Here, we employ single-molecule Förster resonance energy transfer (FRET) measurements to determine the dynamic range and frequency of conformations available to the enzyme in a lipid bilayer during the catalytic cycle. First, we explore issues related to the introduction of fluorescent dyes by cysteine mutagenesis; we discuss the importance of residue selection for dye attachment, and the balance between mutating areas of the protein that will provide useful dynamics while not altering highly conserved residues that could disrupt protein function. To complement and guide the experiments, we used all-atom molecular dynamics simulations and computational methods to estimate FRET efficiency distributions for dye pairs at different sites in different protein conformational states. We present preliminary single-molecule FRET data that points to insights about the binding modes of different membrane-bound pyrophosphatase substrates and inhibitors.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19028249
003      
CZ-PrNML
005      
20190823095940.0
007      
ta
008      
190813s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/bs.mie.2018.04.017 $2 doi
035    __
$a (PubMed)30149870
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Harborne, Steven P D $u Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.
245    10
$a Defining Dynamics of Membrane-Bound Pyrophosphatases by Experimental and Computational Single-Molecule FRET / $c SPD. Harborne, J. Strauss, A. Turku, MA. Watson, R. Tuma, SA. Harris, A. Goldman,
520    9_
$a Membrane-bound pyrophosphatases couple the hydrolysis of inorganic pyrophosphate to the pumping of ions (sodium or protons) across a membrane in order to generate an electrochemical gradient. This class of membrane protein is widely conserved across plants, fungi, archaea, and bacteria, but absent in multicellular animals, making them a viable target for drug design against protozoan parasites such as Plasmodium falciparum. An excellent understanding of many of the catalytic states throughout the enzymatic cycle has already been afforded by crystallography. However, the dynamics and kinetics of the catalytic cycle between these static snapshots remain to be elucidated. Here, we employ single-molecule Förster resonance energy transfer (FRET) measurements to determine the dynamic range and frequency of conformations available to the enzyme in a lipid bilayer during the catalytic cycle. First, we explore issues related to the introduction of fluorescent dyes by cysteine mutagenesis; we discuss the importance of residue selection for dye attachment, and the balance between mutating areas of the protein that will provide useful dynamics while not altering highly conserved residues that could disrupt protein function. To complement and guide the experiments, we used all-atom molecular dynamics simulations and computational methods to estimate FRET efficiency distributions for dye pairs at different sites in different protein conformational states. We present preliminary single-molecule FRET data that points to insights about the binding modes of different membrane-bound pyrophosphatase substrates and inhibitors.
650    _2
$a bakteriální proteiny $x chemie $x genetika $x izolace a purifikace $x metabolismus $7 D001426
650    _2
$a buněčná membrána $x metabolismus $7 D002462
650    _2
$a racionální návrh léčiv $7 D015195
650    _2
$a enzymatické testy $x přístrojové vybavení $x metody $7 D057075
650    _2
$a rezonanční přenos fluorescenční energie $x přístrojové vybavení $x metody $7 D031541
650    _2
$a fluorescenční barviva $x chemie $7 D005456
650    _2
$a fluorescenční mikroskopie $x přístrojové vybavení $x metody $7 D008856
650    12
$a simulace molekulární dynamiky $7 D056004
650    _2
$a mutageneze $7 D016296
650    _2
$a protozoální proteiny $x chemie $x genetika $x izolace a purifikace $x metabolismus $7 D015800
650    _2
$a pyrofosfatasy $x chemie $x genetika $x izolace a purifikace $x metabolismus $7 D011755
650    _2
$a rekombinantní proteiny $x chemie $x genetika $x izolace a purifikace $x metabolismus $7 D011994
650    _2
$a Saccharomyces cerevisiae $7 D012441
650    _2
$a sekvenční seřazení $7 D016415
650    _2
$a zobrazení jednotlivé molekuly $x přístrojové vybavení $x metody $7 D000072760
650    _2
$a software $7 D012984
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Strauss, Jannik $u Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.
700    1_
$a Turku, Ainoleena $u Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
700    1_
$a Watson, Matthew A $u Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.
700    1_
$a Tuma, Roman $u Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
700    1_
$a Harris, Sarah A $u Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.
700    1_
$a Goldman, Adrian $u Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland. Electronic address: a.goldman@leeds.ac.uk.
773    0_
$w MED00008502 $t Methods in enzymology $x 1557-7988 $g Roč. 607, č. - (2018), s. 93-130
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30149870 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190813 $b ABA008
991    __
$a 20190823100155 $b ABA008
999    __
$a ok $b bmc $g 1433398 $s 1066709
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 607 $c - $d 93-130 $e - $i 1557-7988 $m Methods in enzymology $n Methods Enzymol $x MED00008502
GRA    __
$a BB/M021610/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
LZP    __
$a Pubmed-20190813

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...