-
Je něco špatně v tomto záznamu ?
Advanced immunocapture of milk-borne Salmonella by microfluidic magnetically stabilized fluidized bed
J. Srbova, P. Krulisova, L. Holubova, I. Pereiro, A. Bendali, A. Hamiot, V. Podzemna, J. Macak, B. Dupuy, S. Descroix, JL. Viovy, Z. Bilkova,
Jazyk angličtina Země Německo
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28868639
DOI
10.1002/elps.201700257
Knihovny.cz E-zdroje
- MeSH
- Escherichia coli izolace a purifikace MeSH
- imunoglobulin G chemie MeSH
- imunomagnetická separace přístrojové vybavení metody MeSH
- laboratoř na čipu MeSH
- mikrofluidní analytické techniky přístrojové vybavení metody MeSH
- mikrosféry MeSH
- mléko chemie MeSH
- Salmonella cytologie imunologie izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The success of microfluidic immunocapture based on magnetic beads depends primarily on a sophisticated microscale separation system and on the quality of the magnetic immunosorbent. A microfluidic chip containing a magnetically stabilized fluidized bed (μMSFB), developed for the capture and on-chip amplification of bacteria, was recently described by Pereiro et al.. The present work shows the thorough development of anti-Salmonella magnetic immunosorbents with the optimal capture efficiency and selectivity. Based on the corresponding ISO standards, these parameters have to be high enough to capture even a few cells of bacteria in a proper aliquot of sample, e.g. milk. The selection of specific anti-Salmonella IgG molecules and the conditions for covalent bonding were the key steps in preparing an immunosorbent of the desired quality. The protocol for immunocapturing was first thoroughly optimized and studied in a batchwise arrangement, and then the carrier was integrated into the μMSFB chip. The combination of the unique design of the chip (guaranteeing the collision of cells with magnetic beads) with the advanced immunosorbent led to a Salmonella cell capture efficiency of up to 99%. These high values were achieved repeatedly even in samples of milk differing in fat content. The rate of nonspecific capture of Escherichia coli (i.e. the negative control) was only 2%.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19028750
- 003
- CZ-PrNML
- 005
- 20221021111702.0
- 007
- ta
- 008
- 190813s2018 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/elps.201700257 $2 doi
- 035 __
- $a (PubMed)28868639
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Srbova, Jana $u Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic.
- 245 10
- $a Advanced immunocapture of milk-borne Salmonella by microfluidic magnetically stabilized fluidized bed / $c J. Srbova, P. Krulisova, L. Holubova, I. Pereiro, A. Bendali, A. Hamiot, V. Podzemna, J. Macak, B. Dupuy, S. Descroix, JL. Viovy, Z. Bilkova,
- 520 9_
- $a The success of microfluidic immunocapture based on magnetic beads depends primarily on a sophisticated microscale separation system and on the quality of the magnetic immunosorbent. A microfluidic chip containing a magnetically stabilized fluidized bed (μMSFB), developed for the capture and on-chip amplification of bacteria, was recently described by Pereiro et al.. The present work shows the thorough development of anti-Salmonella magnetic immunosorbents with the optimal capture efficiency and selectivity. Based on the corresponding ISO standards, these parameters have to be high enough to capture even a few cells of bacteria in a proper aliquot of sample, e.g. milk. The selection of specific anti-Salmonella IgG molecules and the conditions for covalent bonding were the key steps in preparing an immunosorbent of the desired quality. The protocol for immunocapturing was first thoroughly optimized and studied in a batchwise arrangement, and then the carrier was integrated into the μMSFB chip. The combination of the unique design of the chip (guaranteeing the collision of cells with magnetic beads) with the advanced immunosorbent led to a Salmonella cell capture efficiency of up to 99%. These high values were achieved repeatedly even in samples of milk differing in fat content. The rate of nonspecific capture of Escherichia coli (i.e. the negative control) was only 2%.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a Escherichia coli $x izolace a purifikace $7 D004926
- 650 _2
- $a imunoglobulin G $x chemie $7 D007074
- 650 _2
- $a imunomagnetická separace $x přístrojové vybavení $x metody $7 D018189
- 650 _2
- $a laboratoř na čipu $7 D056656
- 650 _2
- $a mikrofluidní analytické techniky $x přístrojové vybavení $x metody $7 D046210
- 650 _2
- $a mikrosféry $7 D008863
- 650 _2
- $a mléko $x chemie $7 D008892
- 650 _2
- $a Salmonella $x cytologie $x imunologie $x izolace a purifikace $7 D012475
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Krulisova, Pavla $u Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic.
- 700 1_
- $a Holubova, Lucie $u Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic.
- 700 1_
- $a Pereiro, Iago $u Macromolecules and Microsystems in Biology and Medicine, Institute Curie, Paris, France. Sorbonne Universités, UPMC Univ Paris 06, Paris, France. Institut Pierre-Gilles de Gennes, Paris, France.
- 700 1_
- $a Bendali, Amel $u Macromolecules and Microsystems in Biology and Medicine, Institute Curie, Paris, France. Sorbonne Universités, UPMC Univ Paris 06, Paris, France. Institut Pierre-Gilles de Gennes, Paris, France.
- 700 1_
- $a Hamiot, Audrey $u Laboratory of Pathogenesis of Bacterial Anaerobes, Department of Microbiology, Institut Pasteur, Paris, France.
- 700 1_
- $a Podzemna, Veronika $u Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic.
- 700 1_
- $a Macák, Jan, $u Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic. $d 1979- $7 xx0277890
- 700 1_
- $a Dupuy, Bruno $u Laboratory of Pathogenesis of Bacterial Anaerobes, Department of Microbiology, Institut Pasteur, Paris, France. University Paris Diderot, Paris, France.
- 700 1_
- $a Descroix, Stephanie $u Macromolecules and Microsystems in Biology and Medicine, Institute Curie, Paris, France. Sorbonne Universités, UPMC Univ Paris 06, Paris, France. Institut Pierre-Gilles de Gennes, Paris, France.
- 700 1_
- $a Viovy, Jean-Louis $u Macromolecules and Microsystems in Biology and Medicine, Institute Curie, Paris, France. Sorbonne Universités, UPMC Univ Paris 06, Paris, France. Institut Pierre-Gilles de Gennes, Paris, France.
- 700 1_
- $a Bilkova, Zuzana $u Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic.
- 773 0_
- $w MED00001508 $t Electrophoresis $x 1522-2683 $g Roč. 39, č. 3 (2018), s. 526-533
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28868639 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190813 $b ABA008
- 991 __
- $a 20221021111654 $b ABA008
- 999 __
- $a ok $b bmc $g 1433899 $s 1067210
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 39 $c 3 $d 526-533 $e 20170926 $i 1522-2683 $m Electrophoresis $n Electrophoresis $x MED00001508
- LZP __
- $a Pubmed-20190813