• Something wrong with this record ?

Catalytic thermal degradation of Chlorella vulgaris: Evolving deep neural networks for optimization

SY. Teng, ACM. Loy, WD. Leong, BS. How, BLF. Chin, V. Máša,

. 2019 ; 292 (-) : 121971. [pub] 20190808

Language English Country England, Great Britain

Document type Journal Article

The aim of this study is to identify the optimum thermal conversion of Chlorella vulgaris with neuro-evolutionary approach. A Progressive Depth Swarm-Evolution (PDSE) neuro-evolutionary approach is proposed to model the Thermogravimetric analysis (TGA) data of catalytic thermal degradation of Chlorella vulgaris. Results showed that the proposed method can generate predictions which are more accurate compared to other conventional approaches (>90% lower in Root Mean Square Error (RMSE) and Mean Bias Error (MBE)). In addition, Simulated Annealing is proposed to determine the optimal operating conditions for microalgae conversion from multiple trained ANN. The predicted optimum conditions were reaction temperature of 900.0 °C, heating rate of 5.0 °C/min with the presence of HZSM-5 zeolite catalyst to obtain 88.3% of Chlorella vulgaris conversion.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19034423
003      
CZ-PrNML
005      
20191010121242.0
007      
ta
008      
191007s2019 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.biortech.2019.121971 $2 doi
035    __
$a (PubMed)31445240
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Teng, Sin Yong $u Brno University of Technology, Institute of Process Engineering & NETME Centre, Technicka 2896/2, 616 69 Brno, Czech Republic.
245    10
$a Catalytic thermal degradation of Chlorella vulgaris: Evolving deep neural networks for optimization / $c SY. Teng, ACM. Loy, WD. Leong, BS. How, BLF. Chin, V. Máša,
520    9_
$a The aim of this study is to identify the optimum thermal conversion of Chlorella vulgaris with neuro-evolutionary approach. A Progressive Depth Swarm-Evolution (PDSE) neuro-evolutionary approach is proposed to model the Thermogravimetric analysis (TGA) data of catalytic thermal degradation of Chlorella vulgaris. Results showed that the proposed method can generate predictions which are more accurate compared to other conventional approaches (>90% lower in Root Mean Square Error (RMSE) and Mean Bias Error (MBE)). In addition, Simulated Annealing is proposed to determine the optimal operating conditions for microalgae conversion from multiple trained ANN. The predicted optimum conditions were reaction temperature of 900.0 °C, heating rate of 5.0 °C/min with the presence of HZSM-5 zeolite catalyst to obtain 88.3% of Chlorella vulgaris conversion.
650    _2
$a katalýza $7 D002384
650    12
$a Chlorella vulgaris $7 D048408
650    12
$a mikrořasy $7 D058086
650    _2
$a neuronové sítě $7 D016571
650    _2
$a teplota $7 D013696
655    _2
$a časopisecké články $7 D016428
700    1_
$a Loy, Adrian Chun Minh $u National HiCoE Thermochemical Conversion of Biomass, Centre for Biofuel and Biochemical Research, Institute of Sustainable Building, Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia.
700    1_
$a Leong, Wei Dong $u Department of Chemical and Environmental Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.
700    1_
$a How, Bing Shen $u Chemical Engineering Department, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia. Electronic address: bshow@swinburne.edu.my.
700    1_
$a Chin, Bridgid Lai Fui $u Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak Malaysia.
700    1_
$a Máša, Vítězslav $u Brno University of Technology, Institute of Process Engineering & NETME Centre, Technicka 2896/2, 616 69 Brno, Czech Republic.
773    0_
$w MED00000780 $t Bioresource technology $x 1873-2976 $g Roč. 292, č. - (2019), s. 121971
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31445240 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191010121701 $b ABA008
999    __
$a ok $b bmc $g 1451083 $s 1072973
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 292 $c - $d 121971 $e 20190808 $i 1873-2976 $m Bioresource technology $n Bioresour Technol $x MED00000780
LZP    __
$a Pubmed-20191007

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...