-
Something wrong with this record ?
Catalytic thermal degradation of Chlorella vulgaris: Evolving deep neural networks for optimization
SY. Teng, ACM. Loy, WD. Leong, BS. How, BLF. Chin, V. Máša,
Language English Country England, Great Britain
Document type Journal Article
- MeSH
- Chlorella vulgaris * MeSH
- Catalysis MeSH
- Microalgae * MeSH
- Neural Networks, Computer MeSH
- Temperature MeSH
- Publication type
- Journal Article MeSH
The aim of this study is to identify the optimum thermal conversion of Chlorella vulgaris with neuro-evolutionary approach. A Progressive Depth Swarm-Evolution (PDSE) neuro-evolutionary approach is proposed to model the Thermogravimetric analysis (TGA) data of catalytic thermal degradation of Chlorella vulgaris. Results showed that the proposed method can generate predictions which are more accurate compared to other conventional approaches (>90% lower in Root Mean Square Error (RMSE) and Mean Bias Error (MBE)). In addition, Simulated Annealing is proposed to determine the optimal operating conditions for microalgae conversion from multiple trained ANN. The predicted optimum conditions were reaction temperature of 900.0 °C, heating rate of 5.0 °C/min with the presence of HZSM-5 zeolite catalyst to obtain 88.3% of Chlorella vulgaris conversion.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19034423
- 003
- CZ-PrNML
- 005
- 20191010121242.0
- 007
- ta
- 008
- 191007s2019 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.biortech.2019.121971 $2 doi
- 035 __
- $a (PubMed)31445240
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Teng, Sin Yong $u Brno University of Technology, Institute of Process Engineering & NETME Centre, Technicka 2896/2, 616 69 Brno, Czech Republic.
- 245 10
- $a Catalytic thermal degradation of Chlorella vulgaris: Evolving deep neural networks for optimization / $c SY. Teng, ACM. Loy, WD. Leong, BS. How, BLF. Chin, V. Máša,
- 520 9_
- $a The aim of this study is to identify the optimum thermal conversion of Chlorella vulgaris with neuro-evolutionary approach. A Progressive Depth Swarm-Evolution (PDSE) neuro-evolutionary approach is proposed to model the Thermogravimetric analysis (TGA) data of catalytic thermal degradation of Chlorella vulgaris. Results showed that the proposed method can generate predictions which are more accurate compared to other conventional approaches (>90% lower in Root Mean Square Error (RMSE) and Mean Bias Error (MBE)). In addition, Simulated Annealing is proposed to determine the optimal operating conditions for microalgae conversion from multiple trained ANN. The predicted optimum conditions were reaction temperature of 900.0 °C, heating rate of 5.0 °C/min with the presence of HZSM-5 zeolite catalyst to obtain 88.3% of Chlorella vulgaris conversion.
- 650 _2
- $a katalýza $7 D002384
- 650 12
- $a Chlorella vulgaris $7 D048408
- 650 12
- $a mikrořasy $7 D058086
- 650 _2
- $a neuronové sítě $7 D016571
- 650 _2
- $a teplota $7 D013696
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Loy, Adrian Chun Minh $u National HiCoE Thermochemical Conversion of Biomass, Centre for Biofuel and Biochemical Research, Institute of Sustainable Building, Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia.
- 700 1_
- $a Leong, Wei Dong $u Department of Chemical and Environmental Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.
- 700 1_
- $a How, Bing Shen $u Chemical Engineering Department, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia. Electronic address: bshow@swinburne.edu.my.
- 700 1_
- $a Chin, Bridgid Lai Fui $u Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak Malaysia.
- 700 1_
- $a Máša, Vítězslav $u Brno University of Technology, Institute of Process Engineering & NETME Centre, Technicka 2896/2, 616 69 Brno, Czech Republic.
- 773 0_
- $w MED00000780 $t Bioresource technology $x 1873-2976 $g Roč. 292, č. - (2019), s. 121971
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31445240 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20191007 $b ABA008
- 991 __
- $a 20191010121701 $b ABA008
- 999 __
- $a ok $b bmc $g 1451083 $s 1072973
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 292 $c - $d 121971 $e 20190808 $i 1873-2976 $m Bioresource technology $n Bioresour Technol $x MED00000780
- LZP __
- $a Pubmed-20191007