• Je něco špatně v tomto záznamu ?

Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater

Y. Sun, IKM. Yu, DCW. Tsang, X. Cao, D. Lin, L. Wang, NJD. Graham, DS. Alessi, M. Komárek, YS. Ok, Y. Feng, XD. Li,

. 2019 ; 124 (-) : 521-532. [pub] 20190124

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19034801

This paper evaluates a novel sorbent for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater (FWW). A series of iron-biochar (Fe-BC) composites with different Fe/BC impregnation mass ratios (0.5:1, 1:1, and 2:1) were prepared by mixing forestry wood waste-derived BC powder with an aqueous FeCl3 solution and subsequently pyrolyzing them at 1000 °C in a N2-purged tubular furnace. The porosity, surface morphology, crystalline structure, and interfacial chemical behavior of the Fe-BC composites were characterized, revealing that Fe chelated with CO bonds as COFe moieties on the BC surface, which were subsequently reduced to a CC bond and nanoscale zerovalent Fe (nZVI) during pyrolysis. The performance of the Fe-BC composites was evaluated for simultaneous removal of potentially toxic elements (Cu(II), Cr(VI), Zn(II), and As(V)), inherent cations (K, Na, Ca, Mg, Ba, and Sr), hetero-chloride (1,1,2-trichlorethane (1,1,2-TCA)), and total organic carbon (TOC) from high-salinity (233 g L-1 total dissolved solids (TDS)) model FWW. By elucidating the removal mechanisms of different contaminants, we demonstrated that Fe-BC (1:1) had an optimal reducing/charge-transfer reactivity owing to the homogenous distribution of nZVI with the highest Fe0/Fe2+ ratio. A lower Fe content in Fe-BC (0.5:1) resulted in a rapid exhaustion of Fe0, while a higher Fe content in Fe-BC (2:1) caused severe aggregation and oxidization of Fe0, contributing to its complexation/(co-)precipitation with Fe2+/Fe3+. All of the synthesized Fe-BC composites exhibited a high removal capacity for inherent cations (3.2-7.2 g g-1) in FWW through bridging with the CO bonds and cation-π interactions. Overall, this study illustrated the potential efficacy and mechanistic roles of Fe-BC composites for (pre-)treatment of high-salinity and complex FWW.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19034801
003      
CZ-PrNML
005      
20191011092716.0
007      
ta
008      
191007s2019 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.envint.2019.01.047 $2 doi
035    __
$a (PubMed)30685454
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Sun, Yuqing $u Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
245    10
$a Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater / $c Y. Sun, IKM. Yu, DCW. Tsang, X. Cao, D. Lin, L. Wang, NJD. Graham, DS. Alessi, M. Komárek, YS. Ok, Y. Feng, XD. Li,
520    9_
$a This paper evaluates a novel sorbent for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater (FWW). A series of iron-biochar (Fe-BC) composites with different Fe/BC impregnation mass ratios (0.5:1, 1:1, and 2:1) were prepared by mixing forestry wood waste-derived BC powder with an aqueous FeCl3 solution and subsequently pyrolyzing them at 1000 °C in a N2-purged tubular furnace. The porosity, surface morphology, crystalline structure, and interfacial chemical behavior of the Fe-BC composites were characterized, revealing that Fe chelated with CO bonds as COFe moieties on the BC surface, which were subsequently reduced to a CC bond and nanoscale zerovalent Fe (nZVI) during pyrolysis. The performance of the Fe-BC composites was evaluated for simultaneous removal of potentially toxic elements (Cu(II), Cr(VI), Zn(II), and As(V)), inherent cations (K, Na, Ca, Mg, Ba, and Sr), hetero-chloride (1,1,2-trichlorethane (1,1,2-TCA)), and total organic carbon (TOC) from high-salinity (233 g L-1 total dissolved solids (TDS)) model FWW. By elucidating the removal mechanisms of different contaminants, we demonstrated that Fe-BC (1:1) had an optimal reducing/charge-transfer reactivity owing to the homogenous distribution of nZVI with the highest Fe0/Fe2+ ratio. A lower Fe content in Fe-BC (0.5:1) resulted in a rapid exhaustion of Fe0, while a higher Fe content in Fe-BC (2:1) caused severe aggregation and oxidization of Fe0, contributing to its complexation/(co-)precipitation with Fe2+/Fe3+. All of the synthesized Fe-BC composites exhibited a high removal capacity for inherent cations (3.2-7.2 g g-1) in FWW through bridging with the CO bonds and cation-π interactions. Overall, this study illustrated the potential efficacy and mechanistic roles of Fe-BC composites for (pre-)treatment of high-salinity and complex FWW.
650    _2
$a adsorpce $7 D000327
650    _2
$a kationty $7 D002412
650    12
$a dřevěné a živočišné uhlí $7 D002606
650    _2
$a chloridy $x chemie $7 D002712
650    _2
$a hydraulické štěpení $7 D000067071
650    _2
$a železo $x chemie $7 D007501
650    _2
$a oxidace-redukce $7 D010084
650    _2
$a odpadní voda $x chemie $7 D062065
650    _2
$a chemické látky znečišťující vodu $x chemie $7 D014874
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Yu, Iris K M $u Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
700    1_
$a Tsang, Daniel C W $u Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China. Electronic address: dan.tsang@polyu.edu.hk.
700    1_
$a Cao, Xinde $u School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
700    1_
$a Lin, Daohui $u Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
700    1_
$a Wang, Linling $u School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
700    1_
$a Graham, Nigel J D $u Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK.
700    1_
$a Alessi, Daniel S $u Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada.
700    1_
$a Komárek, Michael $u Faculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague-Suchdol, Czech Republic.
700    1_
$a Ok, Yong Sik $u Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea. Electronic address: yongsikok@korea.ac.kr.
700    1_
$a Feng, Yujie $u State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
700    1_
$a Li, Xiang-Dong $u Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
773    0_
$w MED00001541 $t Environment international $x 1873-6750 $g Roč. 124, č. - (2019), s. 521-532
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30685454 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191011093136 $b ABA008
999    __
$a ok $b bmc $g 1451461 $s 1073351
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 124 $c - $d 521-532 $e 20190124 $i 1873-6750 $m Environment international $n Environ Int $x MED00001541
LZP    __
$a Pubmed-20191007

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...