• Something wrong with this record ?

Structural and computational basis for potent inhibition of glutamate carboxypeptidase II by carbamate-based inhibitors

C. Barinka, Z. Novakova, N. Hin, D. Bím, DV. Ferraris, B. Duvall, G. Kabarriti, R. Tsukamoto, M. Budesinsky, L. Motlova, C. Rojas, BS. Slusher, TA. Rokob, L. Rulíšek, T. Tsukamoto,

. 2019 ; 27 (2) : 255-264. [pub] 20181114

Language English Country England, Great Britain

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Grant support
P30 MH075673 NIMH NIH HHS - United States
R01 CA161056 NCI NIH HHS - United States
R01 NS093416 NINDS NIH HHS - United States

A series of carbamate-based inhibitors of glutamate carboxypeptidase II (GCPII) were designed and synthesized using ZJ-43, N-[[[(1S)-1-carboxy-3-methylbutyl]amino]carbonyl]-l-glutamic acid, as a molecular template in order to better understand the impact of replacing one of the two nitrogen atoms in the urea-based GCPII inhibitor with an oxygen atom. Compound 7 containing a C-terminal 2-oxypentanedioic acid was more potent than compound 5 containing a C-terminal glutamic acid (2-aminopentanedioic acid) despite GCPII's preference for peptides containing an N-terminal glutamate as substrates. Subsequent crystallographic analysis revealed that ZJ-43 and its two carbamate analogs 5 and 7 with the same (S,S)-stereochemical configuration adopt a nearly identical binding mode while (R,S)-carbamate analog 8 containing a d-leucine forms a less extensive hydrogen bonding network. QM and QM/MM calculations have identified no specific interactions in the GCPII active site that would distinguish ZJ-43 from compounds 5 and 7 and attributed the higher potency of ZJ-43 and compound 7 to the free energy changes associated with the transfer of the ligand from bulk solvent to the protein active site as a result of the lower ligand strain energy and solvation/desolvation energy. Our findings underscore a broader range of factors that need to be taken into account in predicting ligand-protein binding affinity. These insights should be of particular importance in future efforts to design and develop GCPII inhibitors for optimal inhibitory potency.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19034860
003      
CZ-PrNML
005      
20250318110913.0
007      
ta
008      
191007s2019 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bmc.2018.11.022 $2 doi
035    __
$a (PubMed)30552009
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Barinka, Cyril $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic. Electronic address: cyril.barinka@ibt.cas.cz.
245    10
$a Structural and computational basis for potent inhibition of glutamate carboxypeptidase II by carbamate-based inhibitors / $c C. Barinka, Z. Novakova, N. Hin, D. Bím, DV. Ferraris, B. Duvall, G. Kabarriti, R. Tsukamoto, M. Budesinsky, L. Motlova, C. Rojas, BS. Slusher, TA. Rokob, L. Rulíšek, T. Tsukamoto,
520    9_
$a A series of carbamate-based inhibitors of glutamate carboxypeptidase II (GCPII) were designed and synthesized using ZJ-43, N-[[[(1S)-1-carboxy-3-methylbutyl]amino]carbonyl]-l-glutamic acid, as a molecular template in order to better understand the impact of replacing one of the two nitrogen atoms in the urea-based GCPII inhibitor with an oxygen atom. Compound 7 containing a C-terminal 2-oxypentanedioic acid was more potent than compound 5 containing a C-terminal glutamic acid (2-aminopentanedioic acid) despite GCPII's preference for peptides containing an N-terminal glutamate as substrates. Subsequent crystallographic analysis revealed that ZJ-43 and its two carbamate analogs 5 and 7 with the same (S,S)-stereochemical configuration adopt a nearly identical binding mode while (R,S)-carbamate analog 8 containing a d-leucine forms a less extensive hydrogen bonding network. QM and QM/MM calculations have identified no specific interactions in the GCPII active site that would distinguish ZJ-43 from compounds 5 and 7 and attributed the higher potency of ZJ-43 and compound 7 to the free energy changes associated with the transfer of the ligand from bulk solvent to the protein active site as a result of the lower ligand strain energy and solvation/desolvation energy. Our findings underscore a broader range of factors that need to be taken into account in predicting ligand-protein binding affinity. These insights should be of particular importance in future efforts to design and develop GCPII inhibitors for optimal inhibitory potency.
650    _2
$a zvířata $7 D000818
650    _2
$a karbamáty $x chemická syntéza $x chemie $x metabolismus $7 D002219
650    _2
$a katalytická doména $7 D020134
650    _2
$a buněčné linie $7 D002460
650    _2
$a Drosophila $x genetika $7 D004330
650    _2
$a enzymatické testy $7 D057075
650    _2
$a glutamátkarboxypeptidasa II $x antagonisté a inhibitory $x chemie $x metabolismus $7 D043425
650    _2
$a lidé $7 D006801
650    _2
$a vodíková vazba $7 D006860
650    _2
$a molekulární modely $7 D008958
650    _2
$a inhibitory proteas $x chemická syntéza $x chemie $x metabolismus $7 D011480
650    _2
$a vazba proteinů $7 D011485
650    _2
$a kvantová teorie $7 D011789
650    _2
$a stereoizomerie $7 D013237
650    _2
$a močovina $x analogy a deriváty $x chemická syntéza $x chemie $x metabolismus $7 D014508
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Novakova, Zora $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic.
700    1_
$a Hin, Niyada $u Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD 21205, United States.
700    1_
$a Bím, Daniel, $d 1989- $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic. $7 xx0330077
700    1_
$a Ferraris, Dana V $u McDaniel College, 2 College Hill, Westminster MD 21157, United States.
700    1_
$a Duvall, Bridget $u Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD 21205, United States.
700    1_
$a Kabarriti, Gabriel $u Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD 21205, United States.
700    1_
$a Tsukamoto, Reiji $u Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD 21205, United States.
700    1_
$a Budesinsky, Milos $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic.
700    1_
$a Motlova, Lucia $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic.
700    1_
$a Rojas, Camilo $u Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD 21205, United States; Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD 21205, United States.
700    1_
$a Slusher, Barbara S $u Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD 21205, United States; Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, United States.
700    1_
$a Rokob, Tibor András $u Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Magyar Tudósok körútja 2, Hungary.
700    1_
$a Rulíšek, Lubomír $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic. Electronic address: lubomir.rulisek@uochb.cas.cz.
700    1_
$a Tsukamoto, Takashi $u Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD 21205, United States; Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, United States. Electronic address: ttskuamoto@jhmi.edu.
773    0_
$w MED00000769 $t Bioorganic & medicinal chemistry $x 1464-3391 $g Roč. 27, č. 2 (2019), s. 255-264
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30552009 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20250318110909 $b ABA008
999    __
$a ok $b bmc $g 1451520 $s 1073410
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 27 $c 2 $d 255-264 $e 20181114 $i 1464-3391 $m Bioorganic & medicinal chemistry $n Bioorg Med Chem $x MED00000769
GRA    __
$a P30 MH075673 $p NIMH NIH HHS $2 United States
GRA    __
$a R01 CA161056 $p NCI NIH HHS $2 United States
GRA    __
$a R01 NS093416 $p NINDS NIH HHS $2 United States
LZP    __
$a Pubmed-20191007

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...